Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Mar;278(3):C546-53.
doi: 10.1152/ajpcell.2000.278.3.C546.

Voltage-dependent stimulation of the Na(+)-K(+) pump by insulin in rabbit cardiac myocytes

Affiliations
Free article

Voltage-dependent stimulation of the Na(+)-K(+) pump by insulin in rabbit cardiac myocytes

P S Hansen et al. Am J Physiol Cell Physiol. 2000 Mar.
Free article

Abstract

Insulin enhances Na(+)-K(+) pump activity in various noncardiac tissues. We examined whether insulin exposure in vitro regulates Na(+)-K(+) pump function in rabbit ventricular myocytes. Pump current (I(p)) was measured using the whole-cell patch-clamp technique at test potentials (V(m)s) from -100 to +60 mV. When the Na(+) concentration in the patch pipette ([Na](pip)) was 10 mM, insulin caused a V(m)-dependent increase in I(p). The increase was approximately 70% when V(m) was at near physiological diastolic potentials. This effect persisted after elimination of extracellular voltage-dependent steps and when K(+) and K(+)-congeners were excluded from the patch pipettes. When [Na](pip) was 80 mM, causing near-maximal pump stimulation, insulin had no effect, suggesting that it did not cause an increase in membrane pump density. Effects of tyrphostin A25, wortmannin, okadaic acid, or bisindolylmaleimide I in pipette solutions suggested that the insulin-induced increase in I(p) involved activation of tyrosine kinase, phosphatidylinositol 3-kinase, and protein phosphatase 1, whereas protein phosphatase 2A and protein kinase C were not involved.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources