Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb;20(2):387-95.
doi: 10.1097/00004647-200002000-00021.

Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion

Affiliations

Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion

T N Lin et al. J Cereb Blood Flow Metab. 2000 Feb.

Abstract

The angiopoietin/Tie receptor system may contribute to angiogenesis and vascular remodeling by mediating interactions of endothelial cells with smooth muscle cells and pericytes. The temporal expression of angiopoietin-1 (Angpo-1), angiopoietin-2 (Angpo-2), Tie-1, and Tie-2 mRNA was studied in a focal cerebral ischemia model in rats. The cDNA fragments obtained from reverse transcription polymerase chain reaction amplification were cloned and used as a probe to detect individual genes. Northern blot analysis showed a delayed increase of a 4.4-kb Angpo-1 transcript for up to 2 weeks after ischemia, eightfold higher than the values of the sham-operated controls. A biphasic expression of a 2.4-kb Angpo-2 transcript was noted, peaking at 24 hours (6.4-fold) and 2 weeks (4.6-fold) after ischemia. The expression of Tie-2 mRNA (4.3 kb), a receptor for Angpo-1, and Tie-1 mRNA (4.3 kb) also increased starting 24 hours after reperfusion and remained elevated for up to 2 weeks after ischemia. The temporal profiles of the expression of these genes were different from those of other angiogenic genes such as basic fibrobast growth factor/fibroblast growth factor receptor and vascular endothelial growth factor/vascular endothelial growth factor receptor and proteolytic enzymes (tissue-type plasminogen activator and urokinase plasminogen activator) and their inhibitors (plasminogen activator inhibitor-1). The expression patterns of these genes could be related to progressive tissue liquefaction and neovascularization after ischemia in this stroke model. Differential expression of these angiogenesis genes suggests the involvement of complex regulatory mechanisms that remain to be characterized.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources