Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Feb 15;164(4):1977-85.
doi: 10.4049/jimmunol.164.4.1977.

Transfer of immune complexes from erythrocyte CR1 to mouse macrophages

Affiliations

Transfer of immune complexes from erythrocyte CR1 to mouse macrophages

M L Reinagel et al. J Immunol. .

Abstract

We are developing a potential therapeutic approach for removing pathogens from the circulation of primates in which the pathogen is bound to the complement receptor (CR1) on E using a bispecific mAb complex, a heteropolymer (HP). We have used mAb this approach to demonstrate that cleared prototype pathogens are localized to, phagocytosed in, and destroyed in the liver. Extension of this work to a clinical setting will require a detailed understanding of the mechanism by which the E-bound immune complex substrates are transferred to fixed tissue macrophages in the liver, the transfer reaction. Therefore, we examined an in vitro system to study this process using bacteriophage phiX174 as a model pathogen. E containing phiX174 (bound via an anti-CR1/anti-phiX174 HP) were incubated with P388D1 murine macrophages, and the two cell types were separated by centrifugation through Ficoll. Both E and macrophages were then probed and analyzed by RIA or flow cytometry. The results indicate that all three components of the E-bound IC (phiX174, HP, and CR1) were removed from the E and internalized by the macrophages. We found that transfer requires the Fc portion of IgG, because little transfer of phiX174 occurs when it is bound to E CR1 using a HP containing only Fab fragments. These findings, taken in the context of other studies, suggest a general mechanism for the transfer reaction in which Fc receptors facilitate close juxtaposition of the macrophage to the E-bound IC which then allows a macrophage-associated protease to cleave CR1. The released IC are then internalized and processed by the macrophages.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources