Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 2;18(51):7212-8.
doi: 10.1038/sj.onc.1203169.

C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity

Affiliations

C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity

D Kögel et al. Oncogene. .

Abstract

Dlk (also termed ZIP kinase) is a novel serine/threonine kinase with a unique C-terminal domain that is rich in arginine and contains three putative NLS motifs and a functional lecuine zipper. Dlk is indeed localized in the nucleus where it shows a speckled distribution. To elucidate the biological functions of Dlk, we wanted to identify the signals relevant for nuclear transport and further the nuclear structures which Dlk binds to. Expression of various deletion and point mutations of Dlk as GFP fusion proteins revealed that the leucine zipper is required for association with speckles and the most C-terminal NLS is necessary and sufficient for nuclear transport. Interestingly, a C-terminal deletion mutant defective for nuclear transport exhibited a pronounced colocalization with actin filaments and, even more strikingly, was a very potent inducer of apoptosis. This apoptotic activity was abrogated, however, when this mutant was retargeted to the nucleus via a heterologous NLS from large T, indicating that Dlk only exerts an apoptotic activity in the cytoplasm. To identify the speckle like structures to which Dlk binds we performed immunofluorescence analyses with antibodies directed against representative marker proteins of replication, transcription, or splicing centers. None of these marker proteins revealed a colocalization with Dlk. Instead, we found a partial colocalization with PML bodies which seem to play a key role in regulation of apoptosis. Taken together, these data strongly suggest a functional role for Dlk in control of cell survival which is dependent on its subcellular localization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources