Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;34(10):967-73.
doi: 10.1080/003655299750025057.

Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions

Affiliations

Ethanol oxidation and acetaldehyde production in vitro by human intestinal strains of Escherichia coli under aerobic, microaerobic, and anaerobic conditions

V Salaspuro et al. Scand J Gastroenterol. 1999 Oct.

Abstract

Background: Many human colonic facultative anaerobic and aerobic bacteria are capable of alcohol dehydrogenase (ADH)-mediated ethanol oxidation. In this bacteriocolonic pathway for ethanol oxidation intracolonic ethanol is first oxidized by bacterial ADHs to acetaldehyde, which is further oxidized by either colonic mucosal or bacterial aldehyde dehydrogenases to acetate. The produced acetaldehyde is a highly toxic and carcinogenic agent. This study was aimed to investigate the ethanol oxidation capability and acetaldehyde formation of Escherichia coli IH 50546 and IH 50817. These intestinal E. coli strains expressed either high (IH 50546) or low (IH 50817) ADH activity.

Methods: Strains were cultured for 48 h on agar plates supplemented with ethanol under aerobic, microaerobic (6% O2), and anaerobic conditions.

Results: Under aerobic conditions both E. coli strains oxidized ethanol. The ethanol consumption rates (ECR) were 1.046+/-0.025 mM/h and 0.367+/-0.148 mM/h with IH 50546 and IH 50817, respectively. In the case of IH 50546 this was associated with significant acetaldehyde production (418+/-13 microM), suggesting ADH-mediated ethanol oxidation. Under microaerobic conditions only IH 50546 was able to oxidize ethanol (ECR, 0.498+/-0.074 mM/h) and to produce acetaldehyde (up to 440+/-76 microM) to significant extents. Under anaerobic conditions both strains fermented glucose to ethanol.

Conclusions: This study experimentally shows the potential of certain bacteria representing normal human colonic flora to produce acetaldehyde under various atmospheric conditions that may prevail in different parts of the GI tract. This bacterial adaptation may be an essential feature of the bacteriocolonic pathway to produce toxic and carcinogenic acetaldehyde from either endogenous or exogenous ethanol.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources