Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;140(11):5339-47.
doi: 10.1210/endo.140.11.7135.

Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro

Affiliations

Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro

A Gohel et al. Endocrinology. 1999 Nov.

Abstract

The ability of estrogen to prevent glucocorticoid-induced apoptosis in osteoblasts was studied both in vitro and in vivo. Glucocorticoid treatment for 72 h produced a dose-dependent increase in the number of apoptotic cells, determined by acridine orange/ethidium bromide staining, with a maximal response of 31+/-2% and 26+/-3% with 100 nM corticosterone in primary rat and mouse osteoblasts, respectively. Simultaneous administration of varying concentrations of 17beta-estradiol and 100 nM corticosterone decreased apoptotic osteoblasts in a dose-dependent manner, with a maximal decrease of 70% with 0.01 nM 17beta-estradiol. Terminal deoxynucleotidyltransferase-mediated deoxy-UTP-biotin nick end labeling also demonstrated glucocorticoid-induced DNA fragmentation that was inhibited by estrogen. Estrogen was shown to inhibit apoptosis induced by lipopolysaccharide treatment. As early as 6 h, Western blots demonstrated a dose-dependent decrease in the Bcl-2/Bax ratio, which reached a minimum of 0.18 in osteoblasts treated with 1000 nM corticosterone for 72 h. This reduction in Bcl-2/Bax was abolished by treating osteoblasts simultaneously with 17beta-estradiol, but not with 17alpha-estradiol. In 7-day-old mice, administration of varying concentrations of dexamethasone for 72 h resulted in a dose-dependent increase in the number of apoptotic osteoblasts as demonstrated by in situ terminal deoxynucleotidyltransferase-mediated deoxy-UTP-biotin nick end labeling staining of calvaria. A maximum of 22+/-1% apoptotic osteoblasts on the bone surface was found with 1 mg/kg BW dexamethasone compared with 2+/-1% in vehicle-treated mice. Injection of varying concentrations of 17beta-estradiol (0.5-5 mg/kg BW), but not 17alpha-estradiol, with 1 mg/kg dexamethasone produced a dose-dependent decrease in the number of apoptotic osteoblasts to 5+/-1% with 5 mg/kg 17beta-estradiol. Thus, glucocorticoid-induced apoptosis of osteoblasts may be prevented at least in part by 17beta-estradiol.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms