Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;73(5):2184-94.

The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux

Affiliations
  • PMID: 10537079
Free article

The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux

A Bröer et al. J Neurochem. 1999 Nov.
Free article

Abstract

Glutamine release from astrocytes is an essential part of the glutamate-glutamine cycle in the brain. Uptake of glutamine into cultured rat astrocytes occurs by at least four different routes. In agreement with earlier studies, a significant contribution of amino acid transport systems ASC, A, L, and N was detected. It has not been determined whether these systems are also involved in glutamine efflux or whether specific efflux transporters exist. We show here that ASCT2, a variant of transport system ASC, is strongly expressed in rat astroglia-rich primary cultures but not in neuron-rich primary cultures. The amino acid sequence of rat astroglial ASCT2 is 83% identical to that of mouse ASCT2. In Xenopus laevis oocytes expressing rat ASCT2, we observed high-affinity uptake of [U-14C]glutamine (Km = 70 microM) that was Na(+)-dependent, concentrative, and unaffected by membrane depolarization. When oocytes were preloaded with [U-14C]glutamine, no glutamine efflux was detected in the absence of extracellular amino acids. Neither lowering intracellular pH nor raising the temperature elicited efflux. However, addition of 0.1 mM unlabeled alanine, serine, cysteine, threonine, glutamine, or leucine to the extracellular solution resulted in a rapid release of glutamine from the ASCT2-expressing oocytes. Amino acids that are not recognized as substrates by ASCT2 were ineffective in this role. Extracellular glutamate stimulated glutamine release weakly at pH 7.5 but was more effective on lowering pH to 5.5, consistent with the pH dependence of ASCT2 affinity for glutamate. Our findings suggest a significant role of ASCT2 in glutamine efflux from astrocytes by obligatory exchange with extracellular amino acids. However, the relative contribution of this pathway to glutamine release from cells in vivo or in vitro remains to be determined.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data