Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
- PMID: 10521349
- DOI: 10.1126/science.286.5439.531
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
Abstract
Although cancer classification has improved over the past 30 years, there has been no general approach for identifying new cancer classes (class discovery) or for assigning tumors to known classes (class prediction). Here, a generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case. A class discovery procedure automatically discovered the distinction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without previous knowledge of these classes. An automatically derived class predictor was able to determine the class of new leukemia cases. The results demonstrate the feasibility of cancer classification based solely on gene expression monitoring and suggest a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.
Similar articles
-
Acute leukemia: subtype discovery and prediction of outcome by gene expression profiling.Verh Dtsch Ges Pathol. 2003;87:66-71. Verh Dtsch Ges Pathol. 2003. PMID: 16888896
-
Classification of multiple cancer types by multicategory support vector machines using gene expression data.Bioinformatics. 2003 Jun 12;19(9):1132-9. doi: 10.1093/bioinformatics/btg102. Bioinformatics. 2003. PMID: 12801874
-
A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation.Biotechnol Lett. 2005 Apr;27(8):597-603. doi: 10.1007/s10529-005-3253-0. Biotechnol Lett. 2005. PMID: 15973495
-
Multifaceted approach to the diagnosis and classification of acute leukemias.Clin Chem. 2000 Aug;46(8 Pt 2):1252-9. Clin Chem. 2000. PMID: 10926919 Review.
-
Acute leukemias in children with Down syndrome.Pediatr Clin North Am. 2008 Feb;55(1):53-70, x. doi: 10.1016/j.pcl.2007.11.001. Pediatr Clin North Am. 2008. PMID: 18242315 Review.
Cited by
-
Deep learning assisted cancer disease prediction from gene expression data using WT-GAN.BMC Med Inform Decis Mak. 2024 Oct 24;24(1):311. doi: 10.1186/s12911-024-02712-y. BMC Med Inform Decis Mak. 2024. PMID: 39449042 Free PMC article.
-
Gene signatures for cancer research: A 25-year retrospective and future avenues.PLoS Comput Biol. 2024 Oct 16;20(10):e1012512. doi: 10.1371/journal.pcbi.1012512. eCollection 2024 Oct. PLoS Comput Biol. 2024. PMID: 39413055 Free PMC article. Review.
-
Transforming Cancer Research through Informatics.Cancer Discov. 2024 Oct 4;14(10):1779-1782. doi: 10.1158/2159-8290.CD-24-0604. Cancer Discov. 2024. PMID: 39363746 Free PMC article.
-
Super learner model for classifying leukemia through gene expression monitoring.Discov Oncol. 2024 Sep 27;15(1):499. doi: 10.1007/s12672-024-01337-x. Discov Oncol. 2024. PMID: 39331180 Free PMC article.
-
Bayesian clustering with uncertain data.PLoS Comput Biol. 2024 Sep 3;20(9):e1012301. doi: 10.1371/journal.pcbi.1012301. eCollection 2024 Sep. PLoS Comput Biol. 2024. PMID: 39226325 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous