Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Aug;3(4):348-57.
doi: 10.1006/niox.1999.0242.

Synergistic cytokine-induced nitric oxide production in human alveolar epithelial cells

Affiliations
Comparative Study

Synergistic cytokine-induced nitric oxide production in human alveolar epithelial cells

S Kwon et al. Nitric Oxide. 1999 Aug.

Abstract

Nitric oxide (NO) is an important mediator molecule in regulating normal airway function, as well as in the pathophysiology of inflammatory airway diseases. In addition, cytokines are potent messenger molecules at sites of inflammation. The specific relationship among IL-1beta, TNF-alpha, and IFN-gamma on iNOS induction and NO synthesis in human alveolar epithelial cells has not been determined. In addition, rigorous methods to determine potential synergistic action between the cytokines have not been employed. We exposed monolayer cultures of A549 cells to a factorial combination of three cytokines (IL-1beta, TNF-alpha, and IFN-gamma) and three concentrations (0, 5, and 100 ng/mL). TNF-alpha alone does not induce NO production directly; however, it does have a stimulatory effect on IL-1beta-induced NO production. IL-1beta and INF-gamma both induce NO production alone, yet at different concentration thresholds, and act synergistically when present together. In the presence of all three cytokines, the net effect of NO production exceeds the predicted additive effect of each individual cytokine and the two-way interactions. Several plausible mechanisms of synergy among IL-1beta, TNF-alpha, and IFN-gamma in NO production from human alveolar epithelial cells (A549) are proposed. In order to verify the proposed mechanisms of synergy, future experimental and theoretical studies must address several molecular steps through which the iNOS gene is expressed and regulated, as well as the expression and regulation of enzyme cofactors and substrates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources