Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Jun;5(3):184-91.
doi: 10.1177/135245859900500308.

Nasal administration of transforming growth factor-beta1 induces dendritic cells and inhibits protracted-relapsing experimental allergic encephalomyelitis

Affiliations
Comparative Study

Nasal administration of transforming growth factor-beta1 induces dendritic cells and inhibits protracted-relapsing experimental allergic encephalomyelitis

M Ishikawa et al. Mult Scler. 1999 Jun.

Abstract

Cytokines have a crucial role in initiation and perturbation of EAE that represents an animal model of multiple sclerosis (MS). Administration of transforming growth factor-beta1 (TGF-beta1) to EAE mice improves clinical EAE and prevents relapses by unknown mechanisms. Administering low doses of TGF-beta1 nasally, we confirmed that TGF-beta1 inhibited development and relapse of protracted-relapsing EAE (PR-EAE) in DA rats. Infiltration of CD4+ T-cells and macrophages within the central nervous system was clearly reduced, while proliferation and IFN-gamma secretion of mononuclear cells (MNC) was augmented in TGF-beta1-treated EAE rats compared to PBS-treated control EAE rats. TGF-beta1 administered nasally also increased nitric oxide production and CD4+ T cell apoptosis. TGF-beta1 treated rats showed augmented proliferation of dendritic cells (DC) compared to MNC. These data imply that low doses of TGF-beta1 given by the nasal route prevent PR-EAE and upregulate DC functions that may be involved for disease prevention.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources