Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype
- PMID: 10383430
- DOI: 10.1074/jbc.274.27.19228
Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype
Abstract
Fatty acid beta-oxidation occurs in both mitochondria and peroxisomes. Long chain fatty acids are also metabolized by the cytochrome P450 CYP4A omega-oxidation enzymes to toxic dicarboxylic acids (DCAs) that serve as substrates for peroxisomal beta-oxidation. Synthetic peroxisome proliferators interact with peroxisome proliferator activated receptor alpha (PPARalpha) to transcriptionally activate genes that participate in peroxisomal, microsomal, and mitochondrial fatty acid oxidation. Mice lacking PPARalpha (PPARalpha-/-) fail to respond to the inductive effects of peroxisome proliferators, whereas those lacking fatty acyl-CoA oxidase (AOX-/-), the first enzyme of the peroxisomal beta-oxidation system, exhibit extensive microvesicular steatohepatitis, leading to hepatocellular regeneration and massive peroxisome proliferation, implying sustained activation of PPARalpha by natural ligands. We now report that mice nullizygous for both PPARalpha and AOX (PPARalpha-/- AOX-/-) failed to exhibit spontaneous peroxisome proliferation and induction of PPARalpha-regulated genes by biological ligands unmetabolized in the absence of AOX. In AOX-/- mice, the hyperactivity of PPARalpha enhances the severity of steatosis by inducing CYP4A family proteins that generate DCAs and since they are not metabolized in the absence of peroxisomal beta-oxidation, they damage mitochondria leading to steatosis. Blunting of microvesicular steatosis, which is restricted to few liver cells in periportal regions in PPARalpha-/- AOX-/- mice, suggests a role for PPARalpha-induced genes, especially members of CYP4A family, in determining the severity of steatosis in livers with defective peroxisomal beta-oxidation. In age-matched PPARalpha-/- mice, a decrease in constitutive mitochondrial beta-oxidation with intact constitutive peroxisomal beta-oxidation system contributes to large droplet fatty change that is restricted to centrilobular hepatocytes. These data define a critical role for both PPARalpha and AOX in hepatic lipid metabolism and in the pathogenesis of specific fatty liver phenotype.
Similar articles
-
Peroxisomal beta-oxidation and steatohepatitis.Semin Liver Dis. 2001;21(1):43-55. doi: 10.1055/s-2001-12928. Semin Liver Dis. 2001. PMID: 11296696 Review.
-
Absence of spontaneous peroxisome proliferation in enoyl-CoA Hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver. Further support for the role of fatty acyl CoA oxidase in PPARalpha ligand metabolism.J Biol Chem. 1999 May 28;274(22):15775-80. doi: 10.1074/jbc.274.22.15775. J Biol Chem. 1999. PMID: 10336479
-
Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting.J Biol Chem. 2000 Sep 15;275(37):28918-28. doi: 10.1074/jbc.M910350199. J Biol Chem. 2000. PMID: 10844002
-
Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism.J Biol Chem. 1998 Jun 19;273(25):15639-45. doi: 10.1074/jbc.273.25.15639. J Biol Chem. 1998. PMID: 9624157
-
Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis.Mutat Res. 2000 Mar 17;448(2):159-77. doi: 10.1016/s0027-5107(99)00234-1. Mutat Res. 2000. PMID: 10725470 Review.
Cited by
-
Oxidation of fatty acid may be enhanced by a combination of pomegranate fruit phytochemicals and acetic acid in HepG2 cells.Nutr Res Pract. 2013 Jun;7(3):153-9. doi: 10.4162/nrp.2013.7.3.153. Epub 2013 Jun 3. Nutr Res Pract. 2013. PMID: 23766874 Free PMC article.
-
Exercise in the metabolic syndrome.Oxid Med Cell Longev. 2012;2012:349710. doi: 10.1155/2012/349710. Epub 2012 Jul 5. Oxid Med Cell Longev. 2012. PMID: 22829955 Free PMC article. Review.
-
N-Acetylcysteine Reverses the Mitochondrial Dysfunction Induced by Very Long-Chain Fatty Acids in Murine Oligodendrocyte Model of Adrenoleukodystrophy.Biomedicines. 2021 Dec 3;9(12):1826. doi: 10.3390/biomedicines9121826. Biomedicines. 2021. PMID: 34944641 Free PMC article.
-
The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress.Int J Mol Sci. 2023 Oct 16;24(20):15212. doi: 10.3390/ijms242015212. Int J Mol Sci. 2023. PMID: 37894893 Free PMC article. Review.
-
Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse.Mamm Genome. 2014 Oct;25(9-10):473-86. doi: 10.1007/s00335-014-9521-3. Epub 2014 May 7. Mamm Genome. 2014. PMID: 24802098 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases