Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999:17:739-79.
doi: 10.1146/annurev.immunol.17.1.739.

Degradation of cell proteins and the generation of MHC class I-presented peptides

Affiliations
Review

Degradation of cell proteins and the generation of MHC class I-presented peptides

K L Rock et al. Annu Rev Immunol. 1999.

Abstract

Major histocompatibility complex (MHC) class I molecules display on the cell surface 8- to 10-residue peptides derived from the spectrum of proteins expressed in the cells. By screening for non-self MHC-bound peptides, the immune system identifies and then can eliminate cells that are producing viral or mutant proteins. These antigenic peptides are generated as side products in the continual turnover of intracellular proteins, which occurs primarily by the ubiquitin-proteasome pathway. Most of the oligopeptides generated by the proteasome are further degraded by distinct endopeptidases and aminopeptidases into amino acids, which are used for new protein synthesis or energy production. However, a fraction of these peptides escape complete destruction and after transport into the endoplasmic reticulum are bound by MHC class I molecules and delivered to the cell surface. Herein we review recent discoveries about the proteolytic systems that degrade cell proteins, how the ubiquitin-proteasome pathway generates the peptides presented on MHC-class I molecules, and how this process is stimulated by immune modifiers to enhance antigen presentation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources