Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun 4;274(23):15971-4.
doi: 10.1074/jbc.274.23.15971.

Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases

Affiliations
Free article

Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases

F T Lin et al. J Biol Chem. .
Free article

Abstract

The functions of beta-arrestin1 to facilitate clathrin-mediated endocytosis of the beta2-adrenergic receptor and to promote agonist-induced activation of extracellular signal-regulated kinases (ERK) are regulated by its phosphorylation/dephosphorylation at Ser-412. Cytoplasmic beta-arrestin1 is almost stoichiometrically phosphorylated at Ser-412. Dephosphorylation of beta-arrestin1 at the plasma membrane is required for targeting a signaling complex that includes the agonist-occupied receptors to the clathrin-coated pits. Here we demonstrate that beta-arrestin1 phosphorylation and function are modulated by an ERK-dependent negative feedback mechanism. ERK1 and ERK2 phosphorylate beta-arrestin1 at Ser-412 in vitro. Inhibition of ERK activity by a dominant-negative MEK1 mutant significantly attenuates beta-arrestin1 phosphorylation, thereby increasing the concentration of dephosphorylated beta-arrestin1. Under such conditions, beta-arrestin1-mediated beta2-adrenergic receptor internalization is enhanced as is its ability to bind clathrin. In contrast, if ERK-mediated phosphorylation is increased by transfection of a constitutively active MEK1 mutant, receptor internalization is inhibited. Our results suggest that dephosphorylated beta-arrestin1 mediates endocytosis-dependent ERK activation. Following activation, ERKs phosphorylate beta-arrestin1, thereby exerting an inhibitory feedback control of its function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources