Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;276(4):C812-20.
doi: 10.1152/ajpcell.1999.276.4.C812.

Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO

Affiliations

Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO

S Fischer et al. Am J Physiol. 1999 Apr.

Abstract

In this study, an in vitro model of the blood-brain barrier, consisting of porcine brain-derived microvascular endothelial cells (BMEC), was used to evaluate the mechanism of hypoxia-induced hyperpermeability. We show that hypoxia-induced permeability in BMEC was completely abolished by a neutralizing antibody to vascular endothelial growth factor (VEGF). In contrast, under normoxic conditions, addition of VEGF up to 100 ng/ml did not alter monolayer barrier function. Treatment with either hypoxia or VEGF under normoxic conditions induced a twofold increase in VEGF binding sites and VEGF receptor 1 (Flt-1) mRNA expression in BMEC. Hypoxia-induced permeability also was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine, suggesting that NO is involved in hypoxia-induced permeability changes, which was confirmed by measurements of the cGMP level. During normoxia, treatment with VEGF (5 ng/ml) increased permeability as well as cGMP content in the presence of several antioxidants. These results suggest that hypoxia-induced permeability in vitro is mediated by the VEGF/VEGF receptor system in an autocrine manner and is essentially dependent on reducing conditions stabilizing the second messenger NO as the mediator of changes in barrier function of BMEC.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources