Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Jan;19(1):1-13.
doi: 10.1089/107999099314360.

Triggering the interferon response: the role of IRF-3 transcription factor

Affiliations
Review

Triggering the interferon response: the role of IRF-3 transcription factor

J Hiscott et al. J Interferon Cytokine Res. 1999 Jan.

Abstract

The interferon (IFN) regulatory factors (IRF) consist of a growing family of related transcription proteins first identified as regulators of the IFN-alpha/beta gene promoters, as well as the IFN-stimulated response element (ISRE) of some IFN-stimulated genes. IRF-3 was originally identified as a member of the IRF family based on homology with other IRF family members and on binding to the ISRE of the IFN-stimulated gene 15 (ISG15) promoter. Several recent studies have focused attention on the unique molecular properties of IRF-3 and its role in the regulation of IFN gene expression. IRF-3 is expressed constitutively in a variety of tissues, and the relative levels of IRF-3 mRNA do not change in virus-infected or IFN-treated cells. Following virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues, located in the carboxy-terminus of IRF-3. Phosphorylation causes the cytoplasmic to nuclear translocation of IRF-3, stimulation of DNA binding, and increased transcriptional activation, mediated through the association of IRF-3 with the CBP/p300 coactivator. The purpose of this review is to summarize recent investigations demonstrating the important role of IRF-3 in cytokine gene transcription. These studies provide the framework for a model in which virus-dependent phosphorylation of IRF-3 alters protein conformation to permit nuclear translocation, association with transcriptional partners, and primary activation of IFN and IFN-responsive genes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources