Function of WW domains as phosphoserine- or phosphothreonine-binding modules
- PMID: 10037602
- DOI: 10.1126/science.283.5406.1325
Function of WW domains as phosphoserine- or phosphothreonine-binding modules
Abstract
Protein-interacting modules help determine the specificity of signal transduction events, and protein phosphorylation can modulate the assembly of such modules into specific signaling complexes. Although phosphotyrosine-binding modules have been well-characterized, phosphoserine- or phosphothreonine-binding modules have not been described. WW domains are small protein modules found in various proteins that participate in cell signaling or regulation. WW domains of the essential mitotic prolyl isomerase Pin1 and the ubiquitin ligase Nedd4 bound to phosphoproteins, including physiological substrates of enzymes, in a phosphorylation-dependent manner. The Pin1 WW domain functioned as a phosphoserine- or phosphothreonine-binding module, with properties similar to those of SRC homology 2 domains. Phosphoserine- or phosphothreonine-binding activity was required for Pin1 to interact with its substrates in vitro and to perform its essential function in vivo.
Comment in
-
New clues to how proteins link up to run the cell.Science. 1999 Feb 26;283(5406):1247, 1249. doi: 10.1126/science.283.5406.1247. Science. 1999. PMID: 10084927 No abstract available.
Similar articles
-
NeW wrinkles for an old domain.Cell. 2000 Dec 22;103(7):1001-4. doi: 10.1016/s0092-8674(00)00203-8. Cell. 2000. PMID: 11163176 Review. No abstract available.
-
Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins.Mol Cell. 2000 Oct;6(4):873-83. doi: 10.1016/s1097-2765(05)00083-3. Mol Cell. 2000. PMID: 11090625
-
p13(SUC1) and the WW domain of PIN1 bind to the same phosphothreonine-proline epitope.J Biol Chem. 2001 Jan 12;276(2):1434-8. doi: 10.1074/jbc.M006420200. J Biol Chem. 2001. PMID: 11013245
-
A Smad action turnover switch operated by WW domain readers of a phosphoserine code.Genes Dev. 2011 Jun 15;25(12):1275-88. doi: 10.1101/gad.2060811. Genes Dev. 2011. PMID: 21685363 Free PMC article.
-
Phosphorylation-dependent prolyl isomerization: a novel cell cycle regulatory mechanism.Prog Cell Cycle Res. 2000;4:83-96. doi: 10.1007/978-1-4615-4253-7_8. Prog Cell Cycle Res. 2000. PMID: 10740817 Review.
Cited by
-
Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation.Front Mol Neurosci. 2020 Aug 14;13:150. doi: 10.3389/fnmol.2020.00150. eCollection 2020. Front Mol Neurosci. 2020. PMID: 32922262 Free PMC article.
-
Regulation of AU-Rich Element RNA Binding Proteins by Phosphorylation and the Prolyl Isomerase Pin1.Biomolecules. 2015 Apr 14;5(2):412-34. doi: 10.3390/biom5020412. Biomolecules. 2015. PMID: 25874604 Free PMC article. Review.
-
Arabidopsis kinome: after the casting.Funct Integr Genomics. 2004 Jul;4(3):163-87. doi: 10.1007/s10142-003-0096-4. Epub 2004 Jan 22. Funct Integr Genomics. 2004. PMID: 14740254 Review.
-
Prolyl isomerase Pin1 regulates transcription factor LSF (TFCP2) by facilitating dephosphorylation at two serine-proline motifs.J Biol Chem. 2010 Oct 8;285(41):31139-47. doi: 10.1074/jbc.M109.078808. Epub 2010 Aug 3. J Biol Chem. 2010. PMID: 20682773 Free PMC article.
-
Membrane permeable cyclic peptidyl inhibitors against human Peptidylprolyl Isomerase Pin1.J Med Chem. 2010 Mar 25;53(6):2494-501. doi: 10.1021/jm901778v. J Med Chem. 2010. PMID: 20180533 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous