Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar:112 ( Pt 6):887-94.
doi: 10.1242/jcs.112.6.887.

CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo

Affiliations

CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo

N A Ameen et al. J Cell Sci. 1999 Mar.

Abstract

cAMP activated insertion of the cystic fibrosis transmembrane conductance regulator (CFTR) channels from endosomes to the apical plasma membrane has been hypothesized to regulate surface expression and CFTR function although the physiologic relevance of this remains unclear. We previously identified a subpopulation of small intestinal villus epithelial cells or CFTR high expressor (CHE) cells possessing very high levels of apical membrane CFTR in association with a prominent subapical vesicular pool of CFTR. We have examined the subcellular redistribution of CFTR in duodenal CHE cells in vivo in response to the cAMP activated secretagogue vasoactive intestinal peptide (VIP). Using anti-CFTR antibodies against the C terminus of rodent CFTR and indirect immunofluorescence, we show by quantitative confocal microscopy that CFTR rapidly redistributes from the cytoplasm to the apical surface upon cAMP stimulation by VIP and returns to the cytoplasm upon removal of VIP stimulation of intracellular cAMP levels. Using ultrastructural and confocal immunofluorescence examination in the presence or absence of cycloheximide, we also show that redistribution was not dependent on new protein synthesis, changes in endocytosis, or rearrangement of the apical cytoskeleton. These observations suggest that physiologic cAMP activated apical membrane insertion and recycling of CFTR channels in normal CFTR expressing epithelia contributes to the in vivo regulation of CFTR mediated anion transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources