Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 18;273(51):34558-67.
doi: 10.1074/jbc.273.51.34558.

Identification of the sites of N-linked glycosylation on the human calcium receptor and assessment of their role in cell surface expression and signal transduction

Affiliations
Free article

Identification of the sites of N-linked glycosylation on the human calcium receptor and assessment of their role in cell surface expression and signal transduction

K Ray et al. J Biol Chem. .
Free article

Abstract

The human calcium receptor (hCaR) is a G-protein-coupled receptor containing 11 potential N-linked glycosylation sites in the large extracellular domain. The number of potential N-linked glycosylation sites actually modified, and the effect on cell surface expression and signal transduction of blocking glycosylation at these sites, was examined by site-directed mutagenesis. Asparagine residues of the consensus sequences (Asn-Xaa-Ser/Thr) for N-linked glycosylation were mutated to glutamine individually and in various combinations to disrupt the potential N-linked glycosylation sites in the context of the full-length receptor. The cDNA constructs were transiently transfected into HEK-293 cells lacking endogeneous hCaR, and expressed receptors were analyzed by mobility differences on immunoblots, glycosidase digestion, intact cell enzyme-linked immunoassay, and extracellular calcium-stimulated phosphoinositide hydrolysis assay. Immunoblot analyses and glycosidase digestion studies of the wild type versus mutant receptors demonstrate that, of the 11 potential sites for N-linked glycosylation, eight sites (Asn-90, -130, -261, -287, -446, -468, -488, and -541) are glycosylated; the three remaining sites (Asn-386, -400, and -594) may not be efficiently glycosylated in the native receptor. Sequential mutagenesis of multiple N-linked glycosylation sites and analyses by immunoblotting, immunofluorescence, biotinylation of cell surface proteins, and intact cell enzyme-linked immunoassay indicated that disruption of as few as three glycosylation sites impairs proper processing and expression of the receptor at the cell surface. Disruption of five glycosylation sites reduced cell surface expression by 50-90% depending on which five sites were disrupted. Phosphoinositide hydrolysis assay results for various glycosylation-defective mutant receptors in general correlated well with the level of cell surface expression. Our results demonstrate that among 11 potential N-linked glycosylation sites on the hCaR, eight sites are actually utilized; glycosylation of at least three sites is critical for cell surface expression of the receptor, but glycosylation does not appear to be critical for signal transduction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources