Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Jul;28(7):1007-13.
doi: 10.1016/s0020-7519(98)00076-9.

Apical organelles and host-cell invasion by Apicomplexa

Affiliations
Review

Apical organelles and host-cell invasion by Apicomplexa

J F Dubremetz et al. Int J Parasitol. 1998 Jul.

Abstract

Host-cell invasion by apicomplexan parasites involves the successive exocytosis of three different secretory organelles; namely micronemes, rhoptries and dense granules. The findings of recent studies have extended the structural homologies of each set of organelles between most members of the phylum and suggest shared functions of each set. Micronemes are apparently used for host-cell recognition, binding, and possibly motility; rhoptries for parasitophorous vacuole formation; and dense granules for remodeling the vacuole into a metabolically active compartment. In addition, gene cloning and sequencing have demonstrated conserved domains, which are likely to serve similar functions in the invasion process. This is especially true for microneme proteins containing thrombospondin-like domains, which are likely to be involved in binding to sulphated glycoconjugates. One such protein was recently shown to be required for the motility of Plasmodium sporozoites. These molecules have been shown to be shed on the parasite and/or cell surfaces during the invasion process in Plasmodium, Toxoplasma and Eimeria. For rhoptries and dense granules, the association between exocytosed proteins and the parasitophorous vacuole membrane had been analyzed extensively in Toxoplasma, as these proteins are likely to play a crucial role in metabolic interactions between the parasites and their host cells. The development of parasite transformation by gene transfection has provided powerful tools to analyze the fate and function(s) of the corresponding proteins.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources