Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar;274(3):L369-77.
doi: 10.1152/ajplung.1998.274.3.L369.

Nitric oxide inhibits Na+ absorption across cultured alveolar type II monolayers

Affiliations

Nitric oxide inhibits Na+ absorption across cultured alveolar type II monolayers

Y Guo et al. Am J Physiol. 1998 Mar.

Abstract

We examined the mechanisms by which nitric oxide (.NO) decreased vectorial Na+ transport across confluent monolayers of rat alveolar type II (ATII) cells grown on permeable supports. Amiloride (10 microM) applied to the apical side of monolayers inhibited approximately 90% of the equivalent (Ieq) and the short-circuit (Isc) current, with an half-maximal inhibitory concentration (IC50) of 0.85 microM, indicating that Na+ entry into ATII cells occurred through amiloride-sensitive Na+ channels. .NO generated by spermine NONOate and papa NONOate added to both sides of the monolayers decreased Ieq and increased transepithelial resistance in a concentration-dependent fashion (IC50 = 0.4 microM .NO). These changes were prevented or reversed by addition of oxyhemoglobin (50 microM). Incubation of ATII monolayers with 8-bromoguanosine 3',5'-cyclic monophosphate (400 microM) had no effect on transepithelial Na+ transport. When the basolateral membranes of ATII cells were permeabilized with amphotericin B (10 microM) in the presence of a mucosal-to-serosal Na+ gradient (145:25 mM), .NO (generated by 100 microM papa NONOate) inhibited approximately 60% of the amiloride-sensitive Isc. In addition, after permeabilization of the apical membranes, .NO inhibited the Isc [a measure of Na(+)-K(+)-adenosinetriphosphatase (ATPase) activity] by approximately 60%. We concluded that .NO at noncytotoxic concentrations decreased Na+ absorption across cultured ATII monolayers by inhibiting both the amiloride-sensitive Na+ channels and Na(+)-K(+)-ATPase through guanosine 3',5'-cyclic monophosphate-independent mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources