Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Mar 30;243(1):150-7.
doi: 10.1006/viro.1998.9045.

Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses

Affiliations

Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses

H Vennema et al. Virology. .

Abstract

Feline infectious peritonitis virus (FIPV) strains from six cats and three different geographic areas were compared genetically with feline enteric coronavirus (FECV) isolates obtained from cats inhabiting the same environments. Sequence comparisons were made from 1.2- to 8.9-kb segments on the 3' end of the genome. FECV/FIPV pairs from the same catteries or shelters were 97.3-99.5% related but were genetically distinct from FIPV and FECV strains obtained from cats living in geographically distinct environments. The high genetic similarity between FECVs and FIPVs from the same environment strongly suggested a common ancestry. Based on the presence of deletion mutations in the FIPVs and not in the FECVs, it was concluded that FIPVs evolved as mutants of FECVs. The mutations are deletions in the FIPVs and not insertions in the FECVs since similar sequences are present in other strains that have segregated earlier from a common ancestor. Therefore, the order of descent is form FECV to FIPV. Mutations unique to FIPVs were found in open reading frames (ORFs) 3c in 4 of 6 isolates and/or 7b in 3 of 6 isolates. When the study was extended to include 7 additional FIPV isolates, 11/13 of the FIPVs sequenced were found to have mutated 3c ORFs.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Black J.W. Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP) Vet. Med. Small Anim. Clin. 1980;75:811–814. - PubMed
    1. Chomczynski P., Sacchi N. Single step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. - PubMed
    1. Compton S.R., Barthold S.W., Smith A.L. The cellular and molecular pathogenesis of coronaviruses. Lab. Anim. Sci. 1993;43:15–28. - PubMed
    1. de Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′ end of the feline coronavirus FIPV 79-1146 genome: Comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology. 1988;167:370–376. - PMC - PubMed
    1. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984;12:387–395. - PMC - PubMed

Publication types