Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 20;240(2):349-58.
doi: 10.1006/viro.1997.8921.

Attenuation of recombinant vesicular stomatitis viruses encoding mutant glycoproteins demonstrate a critical role for maintaining a high pH threshold for membrane fusion in viral fitness

Affiliations
Free article

Attenuation of recombinant vesicular stomatitis viruses encoding mutant glycoproteins demonstrate a critical role for maintaining a high pH threshold for membrane fusion in viral fitness

B L Fredericksen et al. Virology. .
Free article

Abstract

A plasmid-based recovery system was used to generate four unique vesicular stomatitis virus (VSV) mutants that encode glycoproteins (G proteins) with single or double amino acid substitutions in two conserved acidic residues adjacent to the putative G protein fusion domain. Previously we demonstrated that three of the mutant G proteins (D137-L, E139-L, and DE-SS) have slightly reduced pH thresholds for membrane fusion activity. In this report we show that even though the viruses encoding D137-L, E139-L, and DE-SS were recovered with high efficiency, these mutants were attenuated for growth in cell culture. Plaque formation was significantly delayed with these mutants and the plaques were smaller and more diffuse than those produced by wild type VSV. In addition, cells infected with these mutants produced approximately 5- to 10-fold less infectious virus than cells infected with a similarly recovered VSV encoding the wild-type G protein. Using R18-labeled virus we found that the mutant G proteins had approximately 50% of the fusion activity of wild-type G at pH 6.3 and only 75% activity at pH 5.8. We also show that the mutant viruses were more sensitive to chloroquine inhibition of infection than either wild-type VSV or the mutant E139-T, which has a fusion phenotype similar to wild-type G protein. Reduced fusion activity and attenuation of infectivity was not due to differences in the amount of G protein incorporated into virions, nor to differences in the amount of virus binding to cells at physiological pH. Although infectivity was assayed at neutral pH, we observed an increase in virus binding with both mutant and wild-type virions as the pH was lowered, and the increase in binding occurred near the pH threshold for membrane fusion activity. From these data we propose a model in which VSV entry involves an increase in virus binding to the inner leaflet of the endosomal membrane during endosome acidification. Concomitant with this higher affinity binding, G protein becomes primed to initiate fusion of the viral envelope with the endosomal membrane. Viruses with mutations that delay the onset of increased binding and fusion lag behind wild-type VSV in their ability to initiate a productive infection, potentially because the location within the cytoplasm where these viruses ultimately fuse is not optimal for either virus uncoating or replication of the viral genome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources