Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;79(1):13-20.
doi: 10.1152/jn.1998.79.1.13.

Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity

Affiliations
Free article

Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity

A I Cowan et al. J Neurophysiol. 1998 Jan.
Free article

Abstract

The synaptic specificity of long-term potentiation (LTP) was examined at synapses formed on aspinous dendrites of interneurons whose somata were located in the pyramidal cell layer of hippocampal area CA1. Intracellular recordings from slices prepared from rats were used to monitor excitatory postsynaptic potentials (EPSPs) elicited by extracellular stimulation in stratum radiatum. Two synaptic inputs were evoked at 0.5 Hz by stimulating axons adjacent to stratum pyramidale and s. lacunosum-moleculare. After obtaining baseline recordings (>/=10 min), one of the EPSPs was conditioned. The protocol involved tetanic stimulation, sometimes combined with somatic depolarization. Low-frequency stimulation of the two pathways was then resumed and EPSPs were recorded for <30 min. We observed both homosynaptic and heterosynaptic changes in synaptic strength. LTP and long-term depression (LTD) were seen in both pathways and all possible combinations of changes in the two EPSPs were observed, including heterosynaptic LTP associated with either homosynaptic LTP or LTD. Intracellular 1,2-bis (2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (10 mM) abolished alterations in synaptic strength. When axons in s. radiatum synapse onto a spiny pyramidal cell, synaptic specificity of LTP is preserved. However the results obtained from aspinous interneurons show that synaptic specificity of LTP is lost. These results are consistent with the hypothesis that spines provide postsynaptic mechanism(s) for conferring specificity to LTP.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources