Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997:419:129-36.
doi: 10.1007/978-1-4419-8632-0_15.

Molecular cloning and characterization of lymphocyte and muscle ADP-ribosyltransferases

Affiliations

Molecular cloning and characterization of lymphocyte and muscle ADP-ribosyltransferases

I J Okazaki et al. Adv Exp Med Biol. 1997.

Abstract

Mono-ADP-ribosylation, catalyzed by ADP-ribosyltransferases, is a posttranslational modification of proteins in which the ADP-ribose moiety of NAD is transferred to an acceptor protein(arginine). Several of the bacterial toxin ADP-ribosyltransferases have been well characterized in their ability to alter cellular metabolism. It has been postulated that these bacterial toxins mimic the actions of transferases from mammalian cells. We have cloned and characterized ADP-ribosyltransferases from rabbit and human skeletal muscle, and mouse lymphocytes. The muscle transferases are glycosylphosphatidylinositol (GPI)-anchored proteins that are conserved among species. Two distinct transferases, termed Yac-1 and Yac-2 were cloned from mouse lymphoma (Yac-1) cells. The Yac-1 transferase, like the muscle enzymes, is a GPI-linked exoenzyme. The Yac-2 transferase, on the other hand, is membrane-associated but appears not to be GPI-linked. In contrast to Yac-1, the Yac-2 enzyme had significant NAD glycohydrolase activity and may preferentially hydrolyze NAD. The bacterial toxin ADP-ribosyltransferases contain three noncontiguous regions of sequence similarity, which are involved in formation of the catalytic site. Alignment of the deduced amino acid sequences of the mammalian transferases and the rodent RT6 enzymes, along with results from site-directed mutagenesis of the muscle enzyme, are consistent with the notion of a common mechanism of NAD binding and catalysis among ADP-ribosyltransferases.

PubMed Disclaimer

Similar articles

Cited by

Substances