Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Jan;40(1):76-81.
doi: 10.1007/s001250050645.

UDP-N-acetylglucosamine transferase and glutamine: fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues

Affiliations
Comparative Study

UDP-N-acetylglucosamine transferase and glutamine: fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues

H Yki-Järvinen et al. Diabetologia. 1997 Jan.

Abstract

Glutamine:fructose 6-phosphate amidotransferase (GFA) is rate-limiting for hexosamine biosynthesis, while a UDP-GlcNAc beta-N-acetylglucosaminyltransferase (O-GlcNAc transferase) catalyses final O-linked attachment of GlcNAc to serine and threonine residues on intracellular proteins. Increased activity of the hexosamine pathway is a putative mediator of glucose-induced insulin resistance but the mechanisms are unclear. We determined whether O-GlcNAc transferase is found in insulin-sensitive tissues and compared its activity to that of GFA in rat tissues. We also determined whether non-insulin-dependent diabetes mellitus (NIDDM) or acute hyperinsulinaemia alters O-GlcNAc transferase activity in human skeletal muscle. O-GlcNAc transferase was measured using 3H-UDP-GlcNAc and a synthetic cationic peptide substrate containing serine and threonine residues, and GFA was determined by measuring a fluorescent derivative of GlcN6P by HPLC. O-GlcNAc transferase activities were 2-4 fold higher in skeletal muscles and the heart than in the liver, which had the lowest activity, while GFA activity was 14-36-fold higher in submandibular gland and 5-18 fold higher in the liver than in skeletal muscles or the heart. In patients with NIDDM (n = 11), basal O-GlcNAc transferase in skeletal muscle averaged 3.8 +/- 0.3 nmol/mg.min, which was not different from that in normal subjects (3.3 +/- 0.4 nmol/mg.min). A 180-min intravenous insulin infusion (40 mU/m2.min) did not change muscle O-GlcNAc transferase activity in either group. We conclude that O-GlcNAc transferase is widely distributed in insulin-sensitive tissues in the rat and is also found in human skeletal muscle. These findings suggest the possibility that O-linked glycosylation of intracellular proteins is involved in mediating glucose toxicity. O-GlcNAc transferase does not, however, appear to be regulated by either NIDDM or acute hyperinsulinaemia, suggesting that mass action effects determine the extent of O-linked glycosylation under hyperglycaemic conditions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources