Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov 1;271(44):27879-87.
doi: 10.1074/jbc.271.44.27879.

Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase

Affiliations
Free article

Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase

S A Hawley et al. J Biol Chem. .
Free article

Abstract

We have developed a sensitive assay for the AMP-activated protein kinase kinase, the upstream component in the AMP-activated protein kinase cascade. Phosphorylation and activation of the downstream kinase by the upstream kinase absolutely requires AMP and is antagonized by high (millimolar) concentrations of ATP. We have purified the upstream kinase >1000-fold from rat liver; a variety of evidence indicates that the catalytic subunit may be a polypeptide of 58 kDa. The physical properties of the downstream and upstream kinases, e.g. catalytic subunit masses (63 versus 58 kDa) and native molecular masses (190 versus 195 kDa), are very similar. However, unlike the downstream kinase, the upstream kinase is not inactivated by protein phosphatases. The upstream kinase phosphorylates the downstream kinase at a single major site on the alpha subunit, i.e. threonine 172, which lies in the "activation segment" between the DFG and APE motifs. This site aligns with activating phosphorylation sites on many other protein kinases, including Thr177 on calmodulin-dependent protein kinase I. As well as suggesting a mechanism of activation of AMP-activated protein kinase, this finding is consistent with our recent report that the AMP-activated protein kinase kinase can slowly phosphorylate and activate calmodulin-dependent protein kinase I, at least in vitro (Hawley, S. A., Selbert, M. A., Goldstein, E. G., Edelman, A. M., Carling, D., and Hardie, D. G. (1995) J. Biol. Chem. 270, 27186-27191).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources