Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;2(10):969-81.

Structural and functional conservation of the Drosophila doublesex splicing enhancer repeat elements

Affiliations

Structural and functional conservation of the Drosophila doublesex splicing enhancer repeat elements

K J Hertel et al. RNA. 1996 Oct.

Abstract

We have compared the RNA sequences and secondary structures of the Drosophila melanogaster and Drosophila virilis doublesex (dsx) splicing enhancers. The sequences of the two splicing enhancers are highly divergent except for the presence of nearly identical 13-nt repeat elements (six in D. melanogaster and four in D. virilis) and a stretch of nucleotides at the 5' and 3' ends of the enhancers. In vitro RNA structure probing of the two enhancers revealed that the 13-nt repeats are predominantly single-stranded. Thus, both the primary sequences and single-stranded nature of the repeats are conserved between the two species. The significance of the primary sequence conservation was demonstrated by showing that the two enhancers are functionally interchangeable in Tra-/Tra2-dependent in vitro splicing. In addition, inhibition of splicing enhancer activity by antisense oligonucleotides complementary to the repeats demonstrated the importance of the conserved single-stranded structure of the repeats. In vitro binding studies revealed that Tra2 interacts with each of the D. melanogaster repeat elements, except for repeat 2, with affinities that are indistinguishable, whereas Tra binds nonspecifically to the enhancer. Taken together, these observations indicate that the organization of sequences within the dsx splicing enhancers of D. melanogaster and D. virilis results in a structure in which each of the repeat elements is single-stranded and therefore accessible for specific recognition by the RNA-binding domain of Tra2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources