Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Sep 17;35(37):12038-45.
doi: 10.1021/bi961325o.

Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay

Affiliations

Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay

R Melki et al. Biochemistry. .

Abstract

ATP and GTP are hydrolyzed during self-assembly of actin and tubulin, respectively. It is known that nucleotide is hydrolyzed on the polymer in two consecutive steps, chemical cleavage of the gamma-phosphate followed by the slower release of Pi. This last step has been shown to play a crucial role in the dynamics of actin filaments and microtubules. Thus far, evidence for a transient GDP-Pi state in microtubule assembly has been obtained using a glass fiber filter assay that had a poor time resolution [Melki, R., Carlier, M.-F., & Pantaloni, D. (1990) Biochemistry 29, 8921-8932]. We have used a new Pi assay [Webb, M. R. (1992) Proc. natl. Acad. Sci. U.S.A. 89, 4884-4887], in which the purine phosphorylase catalyzes the phosphorolysis of 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) into mercaptopurine and ribose phosphate, which is accompanied by an increase in absorbance. This enzyme-linked assay has been used to follow the release of Pi during polymerization of Mg-actin. A value of 350 s was found for the half-time for Pi release on F-actin, in good agreement with previous determinations. The release of Pi following GTP hydrolysis in microtubule assembly was followed using a stopped-flow apparatus. Rapid microtubule assembly was achieved using taxol. The use of a stopped-flow apparatus permitted the continuous recording, with a dead time of 0.8 ms, of both time courses of microtubule assembly and Pi release with greatly improved time resolution. The release of Pi developed with a short lag (35 and 2 s for G-actin and tubulin, respectively) following assembly and appeared 50-fold faster on microtubules than on actin filaments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources