[Basis of radiation protection]
- PMID: 8711464
[Basis of radiation protection]
Abstract
After an introduction, three selected contributions to the 10th Course on Radiation Protection held at the University Hospital of Basel are presented. The principles of radiation protection and new Swiss legislation are discussed as the basis for radiological protection. Ways are proposed of reducing radiation exposure while optimizing the X-ray picture with a minimum dose to patient and personnel. Radiation effects from low doses. From the beginning, life on this planet has been exposed to ionizing radiation from natural sources. For about one century additional irradiation has reached us from man-made sources as well. In Switzerland the overall annual radiation exposure from ambient and man-made sources amounts to about 4 mSv. The terrestrial and cosmic radiation and natural radionuclids in the body cause about 1.17 mSv (29%). As much as 1.6 mSv (40%) results from exposure to radon and its progenies, primarily inside homes. Medical applications contribute approximately 1 mSv (26%) to the annual radiation exposure and releases from atomic weapons, nuclear facilities and miscellaneous industrial operations yield less than 0.12 mSv (< 5%) to the annual dose. Observations of detrimental radiation effects from intermediate to high doses are challenged by observations of biopositive adaptive responses and hormesis following low dose exposure. The important question, whether cellular adaptive response or hormesis could cause beneficial effects to the human organism that would outweigh the detrimental effects attributed to low radiation doses, remains to be resolved. Whether radiation exerts a detrimental, inhibitory, modifying or even beneficial effect is likely to result from identical molecular lesions but to depend upon their quantity, localization and time scale of initiation, as well as the specific responsiveness of the cellular systems involved. For matters of radiation protection the bionegative radiation effects are classified as deterministic effects or stochastic effects respectively. The various histopathological reactions of tissues and organs following localized tissue irradiation, and the radiation syndromes following total body irradiation, constitute the deterministic effects. There will be a threshold below which deterministic effects do not appear and spontaneous incidences are not known. For low dose risk considerations deterministic effects are of no significance. Genetic effects and carcinogenesis are said to be stochastic effects. Characteristically the probability of stochastic effects increases with dose but the severity of the effects is independent of the dose. The shape of the dose-response relationship at intermediate to high dose levels is linear-quadratic. For exposure to low doses the response becomes linear, as is to be expected for a linear-quadratic function at low dose. No threshold is assumed for stochastic effects. The estimate of probability of fatal cancer by the ICRP is 4 x 10(-2) per Sv for the working population and 5 x 10(-2) per Sv for the total population. Their estimate of probability of serious hereditary disorders within the first two generations is 1 x 10(-2) per Sv. The highest probability coefficient is attributed to mental retardation following exposure in utero. Within the sensitive period at 8-15 weeks of gestation, a risk probability of 40 x 10(-2) per Sv is assumed but a threshold at 0.1 Sv is not excluded. Conclusions drawn from experiments, clinical observations and epidemiological studies following intermediate to high radiation exposures attribute a mutagenic and carcinogenic competence to all radiation doses. Microdosimetric considerations support this assumption. This conclusion cannot be confirmed experimentally nor by epidemiological studies of populations living under different conditions from natural sources of radiation. Nevertheless, a change in the present restrictive radiation protection policy does not yet appear appropriate.
Similar articles
-
Protection of the public in situations of prolonged radiation exposure. The application of the Commission's system of radiological protection to controllable radiation exposure due to natural sources and long-lived radioactive residues.Ann ICRP. 1999;29(1-2):1-109. Ann ICRP. 1999. PMID: 10962071
-
An assessment of annual whole-body occupational radiation exposure in Ireland (1996-2005).Radiat Prot Dosimetry. 2008;128(1):12-20. doi: 10.1093/rpd/ncm235. Epub 2007 Jun 11. Radiat Prot Dosimetry. 2008. PMID: 17562657
-
Radiation and your patient: a guide for medical practitioners.Ann ICRP. 2001;31(4):5-31. Ann ICRP. 2001. PMID: 12685757
-
Radiation doses and risks from internal emitters.J Radiol Prot. 2008 Jun;28(2):137-59. doi: 10.1088/0952-4746/28/2/R01. Epub 2008 May 22. J Radiol Prot. 2008. PMID: 18495991 Review.
-
Cancer and non-cancer effects in Japanese atomic bomb survivors.J Radiol Prot. 2009 Jun;29(2A):A43-59. doi: 10.1088/0952-4746/29/2A/S04. Epub 2009 May 19. J Radiol Prot. 2009. PMID: 19454804 Review.
Cited by
-
Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study.J Biomed Phys Eng. 2015 Sep 1;5(3):133-42. eCollection 2015 Sep. J Biomed Phys Eng. 2015. PMID: 26396969 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Research Materials