Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;96(6):2792-801.
doi: 10.1172/JCI118349.

Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity

Affiliations

Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity

A D Baron et al. J Clin Invest. 1995 Dec.

Abstract

Glucosamine (Glmn), a product of glucose metabolism via the hexosamine pathway, causes insulin resistance in isolated adipocytes by impairing insulin-induced GLUT 4 glucose transporter translocation to the plasma membrane. We hypothesized that Glmn causes insulin resistance in vivo by a similar mechanism in skeletal muscle. We performed euglycemic hyperinsulinemic clamps (12 mU/kg/min + 3H-3-glucose) in awake male Sprague-Dawley rats with and without Glmn infusion at rates ranging from 0.1 to 6.5 mg/kg/min. After 4h of euglycemic clamping, hindquarter muscles were quick-frozen and homogenized, and membranes were subfractionated by differential centrifugation and separated on a discontinuous sucrose gradient (25, 30, and 35% sucrose). Membrane proteins were solubilized and immunoblotted for GLUT 4. With Glmn, glucose uptake (GU) was maximally reduced by 33 +/- 1%, P < 0.001. The apparent Glmn dose to reduce maximal GU by 50% was 0.1 mg/kg/min or 1/70th the rate of GU on a molar basis. Control galactosamine and mannosamine infusions had no effect on GU. Relative to baseline, insulin caused a 2.6-fold increase in GLUT 4 in the 25% membrane fraction (f), P < 0.01, and a 40% reduction in the 35%f, P < 0.05, but had no effect on GLUT 4 in the 30% f, P= NS. Addition of Glmn to insulin caused a 41% reduction of GLUT 4 in the 25%f, P < 0.05, a 29% fall in the 30%f, and prevented the reduction of GLUT 4 in the 35% f. The 30%f membranes were subjected to a second separation with a 27 and 30% sucrose gradient. Insulin mobilized GLUT 4 away from the 30%f, P < 0.05, but not the 27% f. In contrast, Glmn reduced GLUT 4 in the 27%f, P < 0.05, but not the 30%f. Thus Glmn appears to alter translocation of an insulin-insensitive GLUT 4 pool. Coinfusion of Glmn did not alter enrichment of the sarcolemmal markers 5'-nucleotidase, Na+/K+ATPase, and phospholemman in either 25, 30, or 35% f. Thus Glmn completely blocked movement of Glut 4 induced by insulin. Glmn is a potent inducer of insulin resistance in vivo by causing (at least in part) a defect intrinsic to GLUT 4 translocation and/or trafficking. These data support a potential role for Glmn to cause glucose-induced insulin resistance (glucose toxicity).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Baillieres Clin Endocrinol Metab. 1993 Oct;7(4):785-873 - PubMed
    1. Anal Biochem. 1976 May 7;72:248-54 - PubMed
    1. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4 - PubMed
    1. Diabetes. 1981 Sep;30(9):739-45 - PubMed

Publication types

MeSH terms