Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Jun;16(6):2878-87.
doi: 10.1128/MCB.16.6.2878.

Either of the major H2A genes but not an evolutionarily conserved H2A.F/Z variant of Tetrahymena thermophila can function as the sole H2A gene in the yeast Saccharomyces cerevisiae

Affiliations
Comparative Study

Either of the major H2A genes but not an evolutionarily conserved H2A.F/Z variant of Tetrahymena thermophila can function as the sole H2A gene in the yeast Saccharomyces cerevisiae

X Liu et al. Mol Cell Biol. 1996 Jun.

Abstract

H2A.F/Z histones are conserved variants that diverged from major H2A proteins early in evolution, suggesting they perform an important function distinct from major H2A proteins. Antisera specific for hv1, the H2A.F/Z variant of the ciliated protozoan Tetrahymena thermophila, cross-react with proteins from Saccharomyces cerevisiae. However, no H2A.F/Z variant has been reported in this budding yeast species. We sought to distinguish among three explanations for these observations: (i) that S. cerevisiae has an undiscovered H2A.F/Z variant, (ii) that the major S. cerevisiae H2A proteins are functionally equivalent to H2A.F/Z variants, or (iii) that the conserved epitope is found on a non-H2A molecule. Repeated attempts to clone an S. cerevisiae hv1 homolog only resulted in the cloning of the known H2A genes yHTA1 and yHTA2. To test for functional relatedness, we attempted to rescue strains lacking the yeast H2A genes with either the Tetrahymena major H2A genes (tHTA1 or tHTA2) or the gene (tHTA3) encoding hv1. Although they differ considerably in sequence from the yeast H2A genes, the major Tetrahymena H2A genes can provide the essential functions of H2A in yeast cells, the first such case of trans-species complementation of histone function. The Tetrahymena H2A genes confer a cold-sensitive phenotype. Although expressed at high levels and transported to the nucleus, hv1 cannot replace yeast H2A proteins. Proteins from S. cerevisiae strains lacking yeast H2A genes fail to cross-react with anti-hv1 antibodies. These studies make it likely that S. cerevisiae differs from most other eukaryotes in that it does not have an H2A.F/Z homolog. A hypothesis is presented relating the absence of H2A.F/Z in S. cerevisiae to its function in other organisms.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nucleic Acids Res. 1987 Jun 11;15(11):4629-44 - PubMed
    1. Mol Cell Biol. 1995 Apr;15(4):1999-2009 - PubMed
    1. Bioessays. 1991 Feb;13(2):87-8 - PubMed
    1. Mol Cell Biol. 1991 Mar;11(3):1729-33 - PubMed
    1. J Biol Chem. 1992 Jul 25;267(21):14622-8 - PubMed

Publication types

MeSH terms

LinkOut - more resources