The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation
- PMID: 8458321
- PMCID: PMC413304
- DOI: 10.1002/j.1460-2075.1993.tb05744.x
The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation
Abstract
Mutant p53 alleles that have a recessive phenotype in human tumors can, in cooperation with an activated H-ras gene, transform rat embryo fibroblasts (REFs). Mutant p53 proteins differ from wild type, and from each other in conformation, localization and transforming potential. Missense mutations in codons 143, 175 and 275 confer strong transforming potential. A serine 135 p53 mutant has an intermediate transforming potential, while the histidine codon 273 allele transforms weakly, if at all. In contrast to the wild type p53 gene, mutant p53 alleles with strong transforming ability cannot suppress the transformation of REFs by other oncogenes. The His273 allele retains partial suppressor function in this assay. The relevance of p53 oligomerization, phosphorylation and nuclear translocation to the transforming potential of mutant p53 and to wild type p53 suppressor function were examined. The inability of mutant p53 polypeptides to form homodimers correlates with loss of transforming function. Monomeric variants of wild type p53 protein, however, retain the ability to suppress focus formation. Phosphorylation of serine residues 315 and 392 is not required for the transforming function of mutant p53, nor is serine 315 required for suppressor function when these alleles are constitutively expressed in REF assays. Nuclear translocation-defective mutant and wild type p53 proteins retain transforming and suppressor function in REF assays.
Similar articles
-
The p53 tumor suppressor gene and gene product.Princess Takamatsu Symp. 1989;20:221-30. Princess Takamatsu Symp. 1989. PMID: 2488233 Review.
-
Transforming activity of mutant human p53 alleles.J Cell Physiol. 1991 Sep;148(3):391-5. doi: 10.1002/jcp.1041480309. J Cell Physiol. 1991. PMID: 1918170
-
The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities.Oncogene. 1994 Nov;9(11):3249-57. Oncogene. 1994. PMID: 7936649
-
Nuclear localization is essential for the activity of p53 protein.Oncogene. 1991 Nov;6(11):2055-65. Oncogene. 1991. PMID: 1719467
-
A comparison of the biological activities of wild-type and mutant p53.FASEB J. 1993 Jul;7(10):855-65. doi: 10.1096/fasebj.7.10.8344485. FASEB J. 1993. PMID: 8344485 Review.
Cited by
-
DNA vaccination with a mutated p53 allele induces specific cytolytic T cells and protects against tumor cell growth and the formation of metastasis.J Cancer Res Clin Oncol. 2009 Apr;135(4):567-80. doi: 10.1007/s00432-008-0491-2. Epub 2008 Oct 10. J Cancer Res Clin Oncol. 2009. PMID: 18846387
-
Phosphorylation of p53 at the casein kinase II site selectively regulates p53-dependent transcriptional repression but not transactivation.Nucleic Acids Res. 1996 Mar 15;24(6):1119-26. doi: 10.1093/nar/24.6.1119. Nucleic Acids Res. 1996. PMID: 8604347 Free PMC article.
-
Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex.J Virol. 2001 Jan;75(2):699-709. doi: 10.1128/JVI.75.2.699-709.2001. J Virol. 2001. PMID: 11134283 Free PMC article.
-
p53 is an important regulator of CCL2 gene expression.Curr Mol Med. 2012 Sep;12(8):929-43. doi: 10.2174/156652412802480844. Curr Mol Med. 2012. PMID: 22804246 Free PMC article.
-
Different regulation of the p53 core domain activities 3'-to-5' exonuclease and sequence-specific DNA binding.Mol Cell Biol. 1999 Mar;19(3):2155-68. doi: 10.1128/MCB.19.3.2155. Mol Cell Biol. 1999. PMID: 10022902 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous