Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Jan;106(1):168-76.
doi: 10.1016/s0016-5085(94)95147-0.

Inhibition of nonlysosomal calcium-dependent proteolysis by glycine during anoxic injury of rat hepatocytes

Affiliations

Inhibition of nonlysosomal calcium-dependent proteolysis by glycine during anoxic injury of rat hepatocytes

J C Nichols et al. Gastroenterology. 1994 Jan.

Abstract

Background/aims: The mechanism by which glycine protects against hepatocyte death during anoxia remains unclear. Nonlysosomal proteolysis, including calpain proteolysis, has been implicated as a mechanism of lethal cell injury. However, the effect of glycine on nonlysosomal proteolysis is unknown. The aim of this study was to ascertain if glycine cytoprotection is associated with inhibition of nonlysosomal proteolysis.

Methods: Rat hepatocyte suspensions were rendered anoxic using an anaerobic chamber. Cell viability was measured by propidium iodide fluorometry. Nonlysosomal protease activity was quantitated by the release of trichloroacetic acid-soluble free amines or tyrosine. Calpain protease activity was measured using a fluorogenic substrate.

Results: Glycine and alanine (but not valine) markedly improved cell viability during anoxia in a concentration-dependent manner. During anoxia, the majority of nonlysosomal proteolysis (60%) was dependent on extracellular Ca2+. Glycine only inhibited that portion of nonlysosomal proteolysis that was dependent on extracellular Ca2+. Amino acids inhibited the anoxia-stimulated increase in calpain protease activity with the same specificity and concentration-dependence observed for cytoprotection. Glycine was more potent in directly inhibiting purified m-calpain as compared with mu-calpain protease activity.

Conclusions: Glycine may exert its cytoprotective activity during lethal anoxic hepatocyte injury, in part by inhibiting Ca(2+)-dependent degradative, nonlysosomal proteases, including calpains.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources