Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Jun;25(6):666-93.
doi: 10.1002/neu.480250608.

Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture

Affiliations
Review

Postsynaptic regulation of the development and long-term plasticity of Aplysia sensorimotor synapses in cell culture

D L Glanzman. J Neurobiol. 1994 Jun.

Abstract

The monosynaptic component of the neuronal circuit that mediates the withdrawal reflex of Aplysia californica can be reconstituted in dissociated cell culture. Study of these in vitro monosynaptic connections has yielded insights into the basic cellular mechanisms of synaptogenesis and long-term synaptic plasticity. One such insight has been that the development of the presynaptic sensory neurons is strongly regulated by the postsynaptic motor neuron. Sensory neurons which have been cocultured with a target motor neuron have more elaborate structures--characterized by neurites with more branches and varicosities--than do sensory neurons grown alone in culture or sensory neurons that have been cocultured with an inappropriate target cell. Another way in which the motor neuron regulates the development of sensory neurons is apparent when sensorimotor cocultures with two presynaptic cells are examined. In such cocultures the outgrowth from the different presynaptic cells is obviously segregated on the processes of the postsynaptic cell. By contrast, when two sensory neurons are placed into cell culture without a motor neuron, their processes readily grow together. In addition to regulating the in vitro development of sensory neurons, the motor neuron also regulates learning-related changes in the structure of sensory neurons. Application of the endogenous facilitatory transmitter serotonin (5-HT) causes long-term facilitation of in vitro sensorimotor synapses due in part to growth of new presynaptic varicosities. But 5-HT applied to sensory neurons alone in culture does not produce structural changes in these cells. More recently it has been found that sensorimotor synapses in cell culture can exhibit long-term potentiation (LTP). Like LTP of some hippocampal synapses, LTP of in vitro Aplysia synapses is regulated by the voltage of the postsynaptic cell. Pairing high-frequency stimulation of sensory neurons with strong hyperpolarization of the motor neuron blocks the induction of LTP. Moreover, LTP of sensorimotor synapses can be induced in Hebbian fashion by pairing weak presynaptic stimulation with strong postsynaptic depolarization. These findings implicate a Hebbian mechanism in classical conditioning in Aplysia. They also indicate that Hebbian LTP is a phylogenetically ancient form of synaptic plasticity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources