Integrins and modulation of transmitter release from motor nerve terminals by stretch
- PMID: 7667637
- DOI: 10.1126/science.7667637
Integrins and modulation of transmitter release from motor nerve terminals by stretch
Abstract
The stretch of a frog muscle within the physiological range can more than double the spontaneous and evoked release of neurotransmitter from its motor nerve terminals. Here, stretch enhancement of release was suppressed by peptides containing the sequence arginine-glycine-aspartic acid (RGD), which blocks integrin binding. Integrin antibodies also inhibited the enhancement obtained by stretching. Stretch enhancement depended on intraterminal calcium derived both from external calcium and from internal stores. Muscle stretch thus might enhance the release of neurotransmitters either by elevating internal calcium concentrations or by increasing the sensitivity of transmitter release to calcium in the nerve terminal.
Similar articles
-
Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals.J Neurosci. 1997 Feb 1;17(3):904-16. doi: 10.1523/JNEUROSCI.17-03-00904.1997. J Neurosci. 1997. PMID: 8994045 Free PMC article.
-
Hypertonic enhancement of transmitter release from frog motor nerve terminals: Ca2+ independence and role of integrins.J Physiol. 2001 Jan 15;530(Pt 2):243-52. doi: 10.1111/j.1469-7793.2001.0243l.x. J Physiol. 2001. PMID: 11208972 Free PMC article.
-
Regulation of transmitter release by muscle length in frog motor nerve terminals. Dynamics of the effect and the role of integrin-ECM interactions.Adv Second Messenger Phosphoprotein Res. 1994;29:383-98. Adv Second Messenger Phosphoprotein Res. 1994. PMID: 7848723 Review.
-
The role of integrins in the modulation of neurotransmitter release from motor nerve terminals by stretch and hypertonicity.J Neurocytol. 2003 Jun-Sep;32(5-8):489-503. doi: 10.1023/B:NEUR.0000020606.58265.b5. J Neurocytol. 2003. PMID: 15034249 Review.
-
Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarised nerve terminals.Nature. 1979 Nov 1;282(5734):84-5. doi: 10.1038/282084a0. Nature. 1979. PMID: 41184 No abstract available.
Cited by
-
Induction of Axonal Outgrowth in Mouse Hippocampal Neurons via Bacterial Magnetosomes.Int J Mol Sci. 2021 Apr 16;22(8):4126. doi: 10.3390/ijms22084126. Int J Mol Sci. 2021. PMID: 33923565 Free PMC article.
-
Regulation of an inactivating potassium current (IA) by the extracellular matrix protein vitronectin in embryonic mouse hippocampal neurones.J Physiol. 2003 Mar 15;547(Pt 3):859-71. doi: 10.1113/jphysiol.2002.036889. Epub 2003 Jan 24. J Physiol. 2003. PMID: 12562917 Free PMC article.
-
Integrin and cytoskeletal involvement in signalling cell volume changes to glutamine transport in rat skeletal muscle.J Physiol. 1998 Oct 15;512 ( Pt 2)(Pt 2):481-5. doi: 10.1111/j.1469-7793.1998.481be.x. J Physiol. 1998. PMID: 9763637 Free PMC article.
-
Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals.Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12611-6. doi: 10.1073/pnas.0901867106. Epub 2009 Jul 20. Proc Natl Acad Sci U S A. 2009. PMID: 19620718 Free PMC article.
-
Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure.Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):849-54. doi: 10.1073/pnas.94.3.849. Proc Natl Acad Sci U S A. 1997. PMID: 9023345 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources