Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol
- PMID: 7592483
- PMCID: PMC177558
- DOI: 10.1128/jb.177.23.6894-6901.1995
Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol
Abstract
Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the involvement of OCT-plasmid-encoded functions. When recombinant strain GPo12(pGEc47) carrying the alk genes from the OCT plasmid was grown on octane, the cells showed the same changes in fatty acid composition as those found for GPo1, indicating that such changes result from induction and expression of the alk genes. This finding was corroborated by inducing GPo12(pGEc47) with dicyclopropylketone (DCPK), a gratuitous inducer of the alk genes. Further experiments showed that the increase of the mean acyl chain length of fatty acids is related to the expression of alkB, which encodes a major integral membrane protein, while the formation of trans unsaturated fatty acids mainly results from the effects of 1-octanol, an octane oxidation product.
Similar articles
-
The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.Mol Microbiol. 1993 Jun;8(6):1039-51. doi: 10.1111/j.1365-2958.1993.tb01649.x. Mol Microbiol. 1993. PMID: 8361351
-
Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1.Appl Environ Microbiol. 2004 Aug;70(8):4544-50. doi: 10.1128/AEM.70.8.4544-4550.2004. Appl Environ Microbiol. 2004. PMID: 15294784 Free PMC article.
-
Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes.J Bacteriol. 1996 Sep;178(18):5508-12. doi: 10.1128/jb.178.18.5508-5512.1996. J Bacteriol. 1996. PMID: 8808943 Free PMC article.
-
Genetics of alkane oxidation by Pseudomonas oleovorans.Biodegradation. 1994 Dec;5(3-4):161-74. doi: 10.1007/BF00696457. Biodegradation. 1994. PMID: 7532480 Review.
-
Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential.Trends Biotechnol. 1990 Feb;8(2):46-52. doi: 10.1016/0167-7799(90)90133-i. Trends Biotechnol. 1990. PMID: 1366497 Review.
Cited by
-
Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization.J Bacteriol. 2006 Jun;188(11):3763-73. doi: 10.1128/JB.00072-06. J Bacteriol. 2006. PMID: 16707669 Free PMC article.
-
Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E.J Bacteriol. 1999 Sep;181(18):5693-700. doi: 10.1128/JB.181.18.5693-5700.1999. J Bacteriol. 1999. PMID: 10482510 Free PMC article.
-
Alternative fate of glyoxylate during acetate and hexadecane metabolism in Acinetobacter oleivorans DR1.Sci Rep. 2019 Oct 7;9(1):14402. doi: 10.1038/s41598-019-50852-3. Sci Rep. 2019. PMID: 31591464 Free PMC article.
-
Effects of a Novel Infant Formula on the Fecal Microbiota in the First Six Months of Life: The INNOVA 2020 Study.Int J Mol Sci. 2023 Feb 3;24(3):3034. doi: 10.3390/ijms24033034. Int J Mol Sci. 2023. PMID: 36769356 Free PMC article.
-
Providing octane degradation capability to Pseudomonas putida KT2440 through the horizontal acquisition of oct genes located on an integrative and conjugative element.Environ Microbiol Rep. 2022 Dec;14(6):934-946. doi: 10.1111/1758-2229.13097. Epub 2022 Jun 1. Environ Microbiol Rep. 2022. PMID: 35651318 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases