Sequences located 3' to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the developmental expression of the human fetal A gamma-globin gene in transgenic mice
- PMID: 7537267
- DOI: 10.1074/jbc.270.17.10256
Sequences located 3' to the breakpoint of the hereditary persistence of fetal hemoglobin-3 deletion exhibit enhancer activity and can modify the developmental expression of the human fetal A gamma-globin gene in transgenic mice
Abstract
Expression of fetal gamma-globin genes in individuals with the deletion forms of hereditary persistence of fetal hemoglobin (HPFH) has been attributed either to enhancement by 3' regulatory elements juxtaposed to gamma-globin genes or to deletion of gamma-gene silencers normally residing within the beta-globin gene cluster. In the present study, we tested the hypothesis of imported enhancers downstream of beta-globin gene using the HPFH-3 deletion as a model. The abnormal bridging fragment of 13.6 kilobases (kb) containing the A gamma-gene with its flanking sequences and 6.2 kb of the juxtaposed region was microinjected into fertilized mouse eggs. Twelve transgenic mice positive for the fragment were generated. Samples from 11.5-day yolk sacs, 16-day fetal liver, and adult blood were analyzed for A gamma-mRNA using RNase protection assays. Three mice lacked A gamma expression in the yolk sac indicating non-optimal integration site. Four expressed A gamma-mRNA at the embryonic stage only, while two expressed A gamma-mRNA in both embryonic and fetal liver erythroid cells. Since the A gamma-gene with its normal flanking sequences and in the absence of the locus control region is expressed only in embryonic cells of transgenic mice, these data suggest that the juxtaposed sequences have altered the developmental specificity of the fetal gamma-globin gene. These sequences were further tested for the presence of an enhancer element, by their ability to activate a fusion reporter gene consisting of the CAT gene linked to the gamma-globin gene promoter, in erythroid (K562) and non-erythroid (HeLa) cells. A 0.7-kb region located immediately 3' to the breakpoint, enhanced chloramphenicol acetyltransferase activity by 3-fold in erythroid cells. The enhancer also activated the embryonic epsilon-globin gene promoter by 2-fold but not the adult beta- or delta-globin gene promoters. The enhancer represents a region of previously known complex tandem repeats; in this study we have completed the sequencing of the region encompassing the 0.7-kb enhancer element. Multiple areas of the enhancer region exhibit homology to the core element of the simian virus 40 enhancer and to the sequences of the human 3' A gamma- and the chicken 3' beta-globin enhancers. A consensus binding site for the erythroid specific GATA-1 transcription factor and seven consensus sites for the ubiquitous CP1 transcription factor are also included within the enhancer. These data suggest that these sequences located immediately 3' to the breakpoint of the HPFH-3 deletion, exhibit both the structure and the function of an enhancer, and can modify the developmental specificity of the fetal gamma-globin genes, resulting in their continued expression during adult life.
Similar articles
-
High levels of human gamma-globin gene expression in adult mice carrying a transgene of deletion-type hereditary persistence of fetal hemoglobin.Mol Cell Biol. 1997 Apr;17(4):2076-89. doi: 10.1128/MCB.17.4.2076. Mol Cell Biol. 1997. PMID: 9121456 Free PMC article.
-
Molecular cloning of the breakpoints of the hereditary persistence of fetal hemoglobin type-6 (HPFH-6) deletion and sequence analysis of the novel juxtaposed region from the 3' end of the beta-globin gene cluster.Hum Genet. 1997 Sep;100(3-4):441-5. doi: 10.1007/s004390050530. Hum Genet. 1997. PMID: 9272169
-
Gamma-globin gene promoter elements required for interaction with globin enhancers.Blood. 1998 Jan 1;91(1):309-18. Blood. 1998. PMID: 9414299
-
Role of intergenic human gamma-delta-globin sequences in human hemoglobin switching and reactivation of fetal hemoglobin in adult erythroid cells.Ann N Y Acad Sci. 2005;1054:48-54. doi: 10.1196/annals.1345.057. Ann N Y Acad Sci. 2005. PMID: 16339651 Review.
-
DNA sequences regulating human globin gene transcription in nondeletional hereditary persistence of fetal hemoglobin.Hemoglobin. 1989;13(6):523-41. doi: 10.3109/03630268908993104. Hemoglobin. 1989. PMID: 2481658 Review.
Cited by
-
Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies.Nat Commun. 2024 Feb 27;15(1):1794. doi: 10.1038/s41467-024-46036-x. Nat Commun. 2024. PMID: 38413594 Free PMC article.
-
Control of globin gene expression during development and erythroid differentiation.Exp Hematol. 2005 Mar;33(3):259-71. doi: 10.1016/j.exphem.2004.11.007. Exp Hematol. 2005. PMID: 15730849 Free PMC article. Review.
-
Regulation of human fetal hemoglobin: new players, new complexities.Blood. 2006 Jan 15;107(2):435-43. doi: 10.1182/blood-2005-05-2113. Epub 2005 Aug 18. Blood. 2006. PMID: 16109777 Free PMC article. Review.
-
Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and deltabeta-thalassemia affects beta- but not gamma-globin gene expression.EMBO J. 1999 Feb 15;18(4):949-58. doi: 10.1093/emboj/18.4.949. EMBO J. 1999. PMID: 10022837 Free PMC article.
-
Integrative annotation of chromatin elements from ENCODE data.Nucleic Acids Res. 2013 Jan;41(2):827-41. doi: 10.1093/nar/gks1284. Epub 2012 Dec 5. Nucleic Acids Res. 2013. PMID: 23221638 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous