Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jan;4(1):251-64.
doi: 10.1523/JNEUROSCI.04-01-00251.1984.

Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells

Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells

R F Ackermann et al. J Neurosci. 1984 Jan.

Abstract

The locally subnormal brain metabolism observed in some experiments utilizing the Sokoloff 2-deoxyglucose (2-DG) method has often been attributed to postsynaptic inhibition despite the fact that inhibitory postsynaptic potentials are themselves caused by energy-requiring mechanisms. To explore this issue, neurophysiologically confirmed long-duration recurrent inhibition of hippocampal pyramidal unit firing was induced by low frequency (2 to 4 Hz) stimulation of the fornix for 60 min following intravenous infusion of [14C]-2-DG. The resulting autoradiograms showed that long-duration suppression of pyramidal cell firing was accompanied by distinctly increased hippocampal 2-DG uptake, particularly in the stratum pyramidale, which contains a dense plexus of inhibitory interneuronal terminals upon pyramidal cells. Both the pyramidal inhibition and the increased 2-DG uptake were confined to the ipsilateral hippocampus in animals with previously severed fornices and hippocampal commissures. In a second series of rats, the excitatory entorhinohippocampal "perforant path" (PP) was stimulated at low frequency (2 to 9 Hz) following 2-DG administration. At 2 to 4 Hz, each PP stimulation resulted in a brief burst of pyramidal unit firing followed by short-duration firing suppression; this result was associated with paradoxically decreased 2-DG uptake in the ipsilateral stratum molecular. By contrast, 7 to 9 Hz entorhinal stimulation induced PP-mediated excitation immediately followed by powerful intrinsic hippocampal inhibition, evidenced by prolonged pyramidal unit suppression after each stimulation. This suppression was accompanied by increased 2-DG uptake in the dentate stratum molecular and hippocampal stratum pyramidale. Thus it appeared that even with entorhinal stimulation, hippocampal 2-DG uptake was more closely associated with long-duration recurrent inhibition than with transient pyramidal excitation. Therefore, although it still remains possible that regions of hypometabolism observed in some previous 2-DG studies may actually reflect mild inhibition, other mechanisms such as disfacilitation are more likely mechanisms for this metabolic pattern.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources