Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Aug;225(1):95-101.
doi: 10.1016/0003-9861(83)90010-3.

Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate

Transfer of reducing equivalents into mitochondria by the interconversions of proline and delta 1-pyrroline-5-carboxylate

C H Hagedorn et al. Arch Biochem Biophys. 1983 Aug.

Abstract

Direct evidence is presented for a proline cycle using a cell-free experimental system which sequentially transfers 3H from [1-3H]glucose to NADP+ to delta 1-pyrroline-5-carboxylate and yields [3H]proline. The formation of [3H]proline depends on the presence of NADP, delta 1-pyrroline-5-carboxylate, and the enzymes glucose-6-phosphate dehydrogenase and delta 1-pyrroline-5-carboxylate reductase. The production of [3H]proline from unlabeled proline in the presence of mitochondria provides direct evidence for one complete turn of a proline cycle which transfers reducing equivalents produced by glucose oxidation in the pentose pathway into mitochondria. In this cycle, proline is oxidized to delta 1-pyrroline-5-carboxylate by mitochondrial proline oxidase. delta 1-pyrroline-5-carboxylate is released from mitochondria and is recycled back to proline by delta 1-pyrroline-5-carboxylate reductase with concomitant oxidation of NADPH. At the maximal rate observed, 60% of delta 1-pyrroline-5-carboxylate produced is recycled back to proline. This cycle provides a mechanism for transferring reducing equivalents from NADPH into mitochondria and is linked to glucose oxidation in the pentose pathway by NADPH turnover.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources