Three-dimensional structural model of eubacterial 5S RNA that has functional implications
- PMID: 6181508
- PMCID: PMC346722
- DOI: 10.1073/pnas.79.15.4599
Three-dimensional structural model of eubacterial 5S RNA that has functional implications
Abstract
Escherichia coli 5S RNA and its specific protein complexes were hydrolyzed with the single-strand-specific nuclease S1. Based on the results, a tertiary structural model for E. coli 5S RNA is proposed in which ribosomal proteins E-L5, E-L18, and E-L25 influence the conformation of the RNA. This may be of significance for ribosomal function. Comparison of the proposed E. coli 5S RNA structure with those of 18 other prokaryotic 5S RNAs led to a generalized eubacterial 5S RNA tertiary structure in which the majority of the conserved nucleotides are in non-base-paired regions and several conserved "looped-out" adenines (in E. coli, adenines -52, -53, -57, -58, and -66) are implied to be important for protein recognition or interaction or both.
Similar articles
-
Structural analyses of E. coli 5S RNA fragments, their associates and complexes with proteins L18 and L25.Nucleic Acids Res. 1982 Feb 11;10(3):947-65. doi: 10.1093/nar/10.3.947. Nucleic Acids Res. 1982. PMID: 6278442 Free PMC article.
-
Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit.Nucleic Acids Res. 1983 Feb 11;11(3):605-17. doi: 10.1093/nar/11.3.605. Nucleic Acids Res. 1983. PMID: 6340064 Free PMC article.
-
Nuclease S1 analysis of eubacterial 5S rRNA secondary structure.J Mol Evol. 1985;22(3):237-42. doi: 10.1007/BF02099753. J Mol Evol. 1985. PMID: 3001324
-
Improved procedure for the isolation of a double-strand-specific ribonuclease and its application to structural analysis of various 5S rRNAs and tRNAs.Eur J Biochem. 1986 Jan 2;154(1):31-9. doi: 10.1111/j.1432-1033.1986.tb09355.x. Eur J Biochem. 1986. PMID: 2417836
-
Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits.Nucleic Acids Res. 1979 Dec 11;7(7):1913-29. doi: 10.1093/nar/7.7.1913. Nucleic Acids Res. 1979. PMID: 94160 Free PMC article. Review.
Cited by
-
Evolutionary changes in the higher order structure of the ribosomal 5S RNA.Nucleic Acids Res. 1987 Jan 12;15(1):161-79. doi: 10.1093/nar/15.1.161. Nucleic Acids Res. 1987. PMID: 3547323 Free PMC article.
-
Consensus structure and evolution of 5S rRNA.Nucleic Acids Res. 1983 Feb 11;11(3):893-900. doi: 10.1093/nar/11.3.893. Nucleic Acids Res. 1983. PMID: 6835839 Free PMC article.
-
Structural requirements for the interaction of 5S rRNA with the eukaryotic transcription factor IIIA.Nucleic Acids Res. 1984 Nov 26;12(22):8393-406. doi: 10.1093/nar/12.22.8393. Nucleic Acids Res. 1984. PMID: 6390342 Free PMC article.
-
TFIIIA binds to different domains of 5S RNA and the Xenopus borealis 5S RNA gene.Mol Cell Biol. 1987 Nov;7(11):3985-93. doi: 10.1128/mcb.7.11.3985-3993.1987. Mol Cell Biol. 1987. PMID: 3431548 Free PMC article.
-
Structure and function of ribosomal RNA.Biochem J. 1985 Jul 1;229(1):1-17. doi: 10.1042/bj2290001. Biochem J. 1985. PMID: 3899100 Free PMC article. Review. No abstract available.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases