Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun 10;260(11):7108-13.

Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii

  • PMID: 3997860
Free article

Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii

J M Goodman. J Biol Chem. .
Free article

Abstract

Methylotrophic yeasts induce large peroxisomes when grown on methanol. The recent ability to stabilize and isolate these peroxisomes at pH 5.5 has led to the demonstration that two polypeptides comprise the bulk of the peroxisome of Candida boidinii, alcohol oxidase, and a 79-kDa species, determined by sodium dodecyl sulfate-polyacrylamide electrophoresis (Goodman, J.M., Scott, C.W., Donahue, P.N., and Atherton, J.P. (1984) J. Biol. Chem. 259, 8485-8493). The 79-kDa peroxisomal protein is now identified as dihydroxyacetone synthase, the first enzyme in the assimilatory pathway of formaldehyde utilization. This identification is based on several criteria: The enzyme activity is mainly in a particulate fraction at pH 5.5 but not at pH 8.0. It copurifies with alcohol oxidase and catalase on sucrose gradients. The 79-kDa protein behaves as a 135,000-kDa dimer on gel filtration, similar to the published behavior of the enzyme. The specific activity of dihydroxyacetone synthase in the pure 79-kDa preparation (3.20 units/mg of protein) is close to that reported for the purified enzyme (3.88 units/mg of protein). Antibodies against dihydroxyacetone synthase were used to show that its synthesis, induction, and assembly are similar to that of alcohol oxidase. Neither contains a detectable cleaved leader sequence and both are assembled post-translationally. The localization of dihydroxyacetone synthase to the peroxisome may influence the regulation of the two pathways of formaldehyde utilization and may protect the cell from damage by formaldehyde.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources