Protein kinase N1 deficiency results in upregulation of cerebral energy metabolism and is highly protective in in vivo and in vitro stroke models
- PMID: 39332493
- DOI: 10.1016/j.metabol.2024.156039
Protein kinase N1 deficiency results in upregulation of cerebral energy metabolism and is highly protective in in vivo and in vitro stroke models
Abstract
Background and aim: We recently identified protein kinase N1 (PKN1) as a master regulator of brain development. However, its function in the adult brain has not been clearly established. In this study, we assessed the cerebral energetic phenotype of wildtype (WT) and global Pkn1 knockout (Pkn1-/-) animals under physiological and pathophysiological conditions.
Methods: Cerebral energy metabolism was analyzed by 13C6-glucose tracing in vivo and real time seahorse analysis of extracellular acidification rates as well as mitochondrial oxygen consumption rates (OCR) of brain slice punches in vitro. Isolated WT and Pkn1-/- brain mitochondria were tested for differences in OCR with different substrates. Metabolite levels were determined by mass spectrometric analysis in brain slices under control and energetic stress conditions, induced by oxygen-glucose deprivation and reperfusion, an in vitro model of ischemic stroke. Differences in enzyme activities were assessed by enzymatic assays, western blotting and bulk RNA sequencing. A middle cerebral artery occlusion stroke model was used to analyze lesion volumes and functional recovery in WT and Pkn1-/- mice.
Results: Pkn1 deficiency resulted in a remarkable upregulation of cerebral energy metabolism, in vivo and in vitro. This was due to two separate mechanisms involving an enhanced glycolytic flux and higher pyruvate-induced mitochondrial OCR. Mechanistically we show that Pkn1-/- brain tissue exhibits an increased activity of the glycolysis rate-limiting enzyme phosphofructokinase. Additionally, glucose-1,6-bisphosphate levels, a metabolite that increases mitochondrial pyruvate uptake, were elevated upon Pkn1 deficiency. Consequently, Pkn1-/- brain slices had more ATP and a greater accumulation of ATP degradation metabolites during energetic stress. This translated into increased phosphorylation and activity of adenosine monophosphate (AMP)-activated protein kinase (AMPK) during in vitro stroke. Accordingly, Pkn1-/- brain slices showed a post-ischemic transcriptional upregulation of energy metabolism pathways and Pkn1 deficiency was strongly protective in in vitro and in vivo stroke models. While inhibition of mitochondrial pyruvate uptake only moderately affected the protective phenotype, inhibition of AMPK in Pkn1-/- slices increased post-ischemic cell death in vitro.
Conclusion: This is the first study to comprehensively demonstrate an essential and unique role of PKN1 in cerebral energy metabolism, regulating glycolysis and mitochondrial pyruvate-induced respiration. We further uncovered a highly protective phenotype of Pkn1 deficiency in both, in vitro and in vivo stroke models, validating inhibition of PKN1 as a promising new therapeutic target for the development of novel stroke therapies.
Keywords: AMPK; Cerebral energy metabolism; PFK; PGM2L1; Protein kinase N1; Stroke.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare no conflict of interest.
Similar articles
-
Glucose-1,6-bisphosphate: A new gatekeeper of cerebral mitochondrial pyruvate uptake.Mol Metab. 2024 Oct;88:102018. doi: 10.1016/j.molmet.2024.102018. Epub 2024 Aug 24. Mol Metab. 2024. PMID: 39182844 Free PMC article.
-
RETRACTED: Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.Int J Antimicrob Agents. 2020 Jul;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949. Epub 2020 Mar 20. Int J Antimicrob Agents. 2020. Retraction in: Int J Antimicrob Agents. 2025 Jan;65(1):107416. doi: 10.1016/j.ijantimicag.2024.107416 PMID: 32205204 Free PMC article. Retracted. Clinical Trial.
-
Depressing time: Waiting, melancholia, and the psychoanalytic practice of care.In: Kirtsoglou E, Simpson B, editors. The Time of Anthropology: Studies of Contemporary Chronopolitics. Abingdon: Routledge; 2020. Chapter 5. In: Kirtsoglou E, Simpson B, editors. The Time of Anthropology: Studies of Contemporary Chronopolitics. Abingdon: Routledge; 2020. Chapter 5. PMID: 36137063 Free Books & Documents. Review.
-
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2. Cochrane Database Syst Rev. 2022. PMID: 36161421 Free PMC article. Review.
-
An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism.Phytomedicine. 2024 Dec;135:156158. doi: 10.1016/j.phymed.2024.156158. Epub 2024 Oct 15. Phytomedicine. 2024. PMID: 39447228
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources