Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Nov 6;32(11):3772-3792.
doi: 10.1016/j.ymthe.2024.09.019. Epub 2024 Sep 17.

Synergistic integration of mRNA-LNP with CAR-engineered immune cells: Pioneering progress in immunotherapy

Affiliations
Review

Synergistic integration of mRNA-LNP with CAR-engineered immune cells: Pioneering progress in immunotherapy

Zhaozhao Chen et al. Mol Ther. .

Abstract

Chimeric antigen receptor T cell (CAR-T) therapy has emerged as a revolutionary approach in the treatment of malignancies. Despite its remarkable successes, this field continues to grapple with challenges such as scalability, safety concerns, limited therapeutic effect, in vivo persistence, and the need for precise control over CAR expression. In the post-pandemic era of COVID-19 vaccine immunization, the application of messenger RNA (mRNA) encapsulated within lipid nanoparticles (LNPs) has recently garnered significant attention as a potential solution to address these challenges. This review delves into the dynamic landscape of mRNA-LNP technology and its potential implications for CAR-engineered immune cell-based immunotherapy.

Keywords: CAR-engineered immune cells; chimeric antigen receptor; immunotherapy; mRNA-LNP.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Similar articles

References

    1. Huang R., Li X., He Y., Zhu W., Gao L., Liu Y., Gao L., Wen Q., Zhong J.F., Zhang C., Zhang X. Recent advances in CAR-T cell engineering. J. Hematol. Oncol. 2020;13:86. doi: 10.1186/s13045-020-00910-5. - DOI - PMC - PubMed
    1. Abramson J.S., Palomba M.L., Gordon L.I., Lunning M.A., Wang M., Arnason J., Mehta A., Purev E., Maloney D.G., Andreadis C., et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet (London, England) 2020;396:839–852. doi: 10.1016/s0140-6736(20)31366-0. - DOI - PubMed
    1. Locke F.L., Ghobadi A., Jacobson C.A., Miklos D.B., Lekakis L.J., Oluwole O.O., Lin Y., Braunschweig I., Hill B.T., Timmerman J.M., et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019;20:31–42. doi: 10.1016/s1470-2045(18)30864-7. - DOI - PMC - PubMed
    1. Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A., Braunschweig I., Oluwole O.O., Siddiqi T., Lin Y., et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017;377:2531–2544. doi: 10.1056/NEJMoa1707447. - DOI - PMC - PubMed
    1. Schuster S.J., Bishop M.R., Tam C.S., Waller E.K., Borchmann P., McGuirk J.P., Jäger U., Jaglowski S., Andreadis C., Westin J.R., et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019;380:45–56. doi: 10.1056/NEJMoa1804980. - DOI - PubMed

MeSH terms

LinkOut - more resources