Shifting redox reaction equilibria on demand using an orthogonal redox cofactor
- PMID: 39138383
- DOI: 10.1038/s41589-024-01702-5
Shifting redox reaction equilibria on demand using an orthogonal redox cofactor
Abstract
Nature's two redox cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), are held at different reduction potentials, driving catabolism and anabolism in opposite directions. In biomanufacturing, there is a need to flexibly control redox reaction direction decoupled from catabolism and anabolism. We established nicotinamide mononucleotide (NMN+) as a noncanonical cofactor orthogonal to NAD(P)+. Here we present the development of Nox Ortho, a reduced NMN+ (NMNH)-specific oxidase, that completes the toolkit to modulate NMNH:NMN+ ratio together with an NMN+-specific glucose dehydrogenase (GDH Ortho). The design principle discovered from Nox Ortho engineering and modeling is facilely translated onto six different enzymes to create NMN(H)-orthogonal biocatalysts with a consistent ~103-106-fold cofactor specificity switch from NAD(P)+ to NMN+. We assemble these enzymes to produce stereo-pure 2,3-butanediol in cell-free systems and in Escherichia coli, enabled by NMN(H)'s distinct redox ratio firmly set by its designated driving forces, decoupled from both NAD(H) and NADP(H).
© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Update of
-
Shifting Redox Reaction Equilibria on Demand Using an Orthogonal Redox Cofactor.bioRxiv [Preprint]. 2023 Aug 30:2023.08.29.555398. doi: 10.1101/2023.08.29.555398. bioRxiv. 2023. Update in: Nat Chem Biol. 2024 Aug 13. doi: 10.1038/s41589-024-01702-5. PMID: 37693387 Free PMC article. Updated. Preprint.
Similar articles
-
Shifting Redox Reaction Equilibria on Demand Using an Orthogonal Redox Cofactor.bioRxiv [Preprint]. 2023 Aug 30:2023.08.29.555398. doi: 10.1101/2023.08.29.555398. bioRxiv. 2023. Update in: Nat Chem Biol. 2024 Aug 13. doi: 10.1038/s41589-024-01702-5. PMID: 37693387 Free PMC article. Updated. Preprint.
-
Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis.Nat Chem Biol. 2020 Jan;16(1):87-94. doi: 10.1038/s41589-019-0402-7. Epub 2019 Nov 25. Nat Chem Biol. 2020. PMID: 31768035 Free PMC article.
-
Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor.Microb Cell Fact. 2020 Jul 27;19(1):150. doi: 10.1186/s12934-020-01415-z. Microb Cell Fact. 2020. PMID: 32718347 Free PMC article.
-
Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration.Biotechnol Adv. 2023 Mar-Apr;63:108102. doi: 10.1016/j.biotechadv.2023.108102. Epub 2023 Jan 18. Biotechnol Adv. 2023. PMID: 36681133 Review.
-
The biosynthesis of nicotinamide adenine dinucleotides in bacteria.Vitam Horm. 2001;61:103-19. doi: 10.1016/s0083-6729(01)61003-3. Vitam Horm. 2001. PMID: 11153263 Review.
Cited by
-
Orthogonal redox control.Nat Chem Biol. 2024 Nov;20(11):1395-1396. doi: 10.1038/s41589-024-01728-9. Nat Chem Biol. 2024. PMID: 39317846 No abstract available.
References
-
- Cresko, J. et al. Industrial Decarbonization Roadmap (US Department of Energy, 2022).
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources