Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Nov;49(11):102792.
doi: 10.1016/j.cpcardiol.2024.102792. Epub 2024 Aug 11.

Predictors of arrhythmias in the population hospitalized for SARS-CoV-2

Affiliations
Review

Predictors of arrhythmias in the population hospitalized for SARS-CoV-2

Endurance Evbayekha et al. Curr Probl Cardiol. 2024 Nov.

Abstract

Background: Studies exploring predictors of arrhythmias in the population primarily hospitalized for SARS-CoV-2 (COVID-19) are scarce. Understanding this is crucial for risk stratification and appropriate management.

Methods: Using the 2020 National Inpatient Sample (NIS) database, we identified primary admissions for COVID-19. A 'greedy neighbor' 1:1 propensity-score matching (PSM) accounted for baseline differences. Then, multivariable logistic regression models were employed to account for confounders and estimate the probability of arrhythmia.

Results: There were a total of 1,058,815 admissions for COVID-19 (mean age 64.3 years ±16.8), 47.2% female, 52.5% (107698) White, 18.5% (37973) Blacks, and 20.7% (42,447) Hispanics. Atrial fibrillation was the most prevalent arrhythmia, 15.1% (31,942). After PSM, 166,405 arrhythmia hospitalizations were matched to 166,405 hospitalizations without arrhythmia. Sick sinus syndrome 4.9 (4.4-5.5), dyslipidemia 1.2 (1.2-1.3), cardiac arrest 1.3 (1.1-1.4), invasive mechanical ventilation 1.9 (1.8-2.0) and obesity 1.3 (1.2-1.4), (p<0.0001, all) were all independent predictors of arrhythmias.

Conclusions: Our analysis revealed a notable proportion of hospitalized COVID-19 patients with arrhythmias. Dyslipidemia, obesity, sick sinus syndrome, invasive mechanical ventilation, and cardiac arrest were independent predictors of arrhythmias.

Keywords: Arrhythmias; COVID-19; Coronavirus; In-hospital outcomes; National inpatient sample; Predictors; SARS-Cov-2.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources