Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Sep;602(17):4097-4110.
doi: 10.1113/JP286313. Epub 2024 Jul 31.

Fibroblast growth factor homologous factors: canonical and non-canonical mechanisms of action

Affiliations
Review

Fibroblast growth factor homologous factors: canonical and non-canonical mechanisms of action

Mitchell Goldfarb. J Physiol. 2024 Sep.

Abstract

Since their discovery nearly 30 years ago, fibroblast growth factor homologous factors (FHFs) are now known to control the functionality of excitable tissues through a range of mechanisms. Nervous and cardiac system dysfunctions are caused by loss- or gain-of-function mutations in FHF genes. The best understood 'canonical' targets for FHF action are voltage-gated sodium channels, and recent studies have expanded the repertoire of ways that FHFs modulate sodium channel gating. Additional 'non-canonical' functions of FHFs in excitable and non-excitable cells, including cancer cells, have been reported over the past dozen years. This review summarizes and evaluates reported canonical and non-canonical FHF functions.

Keywords: FGFR; FHF; cancer cells; cardiac electrophysiology; iFGF; neuronal excitability; sodium channel; synaptic transmission.

PubMed Disclaimer

Similar articles

References

    1. Abrams, J., Roybal, D., Chakouri, N., Katchman, A. N., Weinberg, R., Yang, L., Chen, B. X., Zakharov, S. I., Hennessey, J. A., Avula, U. M. R., Diaz, J., Wang, C., Wan, E. Y., Pitt, G. S., Ben‐Johny, M., & Marx, S. O. (2020). Fibroblast growth factor homologous factors tune arrhythmogenic late NaV1.5 current in calmodulin binding‐deficient channels. Journal of Clinical Investigation Insight, 5(19), e141376.
    1. Al‐Mehmadi, S., Splitt, M., DDDSg F., Ramesh, V., de Brosse, S., Dessoffy, K., Xia, F., Yang, Y., Rosenfeld, J. A., Cossette, P., Michaud, J. L., Hamdan, F. F., Campeau, P. M., & Minassian, B. A., For DDDSg. (2016). FHF1 (FGF12) epileptic encephalopathy. Neurology Genetics, 2(6), e115.
    1. Alshammari, T. K., Alshammari, M. A., Nenov, M. N., Hoxha, E., Cambiaghi, M., Marcinno, A., James, T. F., Singh, P., Labate, D., Li, J., Meltzer, H. Y., Sacchetti, B., Tempia, F., & Laezza, F. (2016). Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia. Translational Psychiatry, 6(5), e806.
    1. Angsutararux, P., Dutta, A. K., Marras, M., Abella, C., Mellor, R. L., Shi, J., Nerbonne, J. M., & Silva, J. R. (2023). Differential regulation of cardiac sodium channels by intracellular fibroblast growth factors. Journal of General Physiology, 155(5), e202213300.
    1. Arevalo, H. J., Boyle, P. M., & Trayanova, N. A. (2016). Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Progress in Biophysics and Molecular Biology, 121(2), 185–194.

MeSH terms

Substances

LinkOut - more resources