This is a preprint.
Insights into Human Norovirus Cultivation in Human Intestinal Enteroids
- PMID: 38826387
- PMCID: PMC11142254
- DOI: 10.1101/2024.05.24.595764
Insights into Human Norovirus Cultivation in Human Intestinal Enteroids
Update in
-
Insights into human norovirus cultivation in human intestinal enteroids.mSphere. 2024 Nov 21;9(11):e0044824. doi: 10.1128/msphere.00448-24. Epub 2024 Oct 15. mSphere. 2024. PMID: 39404443 Free PMC article.
Abstract
Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research. We optimized culture media conditions and generated genetically-modified HIE cultures to enhance HuNoV replication in HIEs. Building upon these achievements, we now present new insights to this culture system, which involve testing different media, unique HIE lines, and additional virus strains. HuNoV infectivity was evaluated and compared in new HIE models, including HIEs generated from different intestinal segments of individual adult organ donors, HIEs from human intestinal organoids produced from directed differentiation of human embryonic stem cells into intestinal organoids that were transplanted and matured in mice before making enteroids (H9tHIEs), genetically-engineered (J4 FUT2 knock-in [ KI ], J2 STAT1 knock-out [ KO ]) HIEs, as well as HIEs derived from a patient with common variable immunodeficiency (CVID) and from infants. Our findings reveal that small intestinal HIEs, but not colonoids, from adults, H9tHIEs, HIEs from a CVID patient, and HIEs from infants support HuNoV replication with segment and strain-specific differences in viral infection. J4 FUT2-KI HIEs exhibit the highest susceptibility to HuNoV infection, allowing the cultivation of a broader range of GI and GII HuNoV strains than previously reported. Overall, these results contribute to a deeper understanding of HuNoVs and highlight the transformative potential of HIE cultures in HuNoV research.
Importance: HuNoVs cause global diarrheal illness and chronic infections in immunocompromised patients. This manuscript reports approaches for cultivating HuNoVs in secretor positive human intestinal enteroids (HIEs). HuNoV infectivity was compared in new HIE models, including ones from i) different intestinal segments of single donors, ii) human embryonic stem cell-derived organoids transplanted into mice, iii) genetically-modified lines, and iv) a patient with chronic variable immunodeficiency disease. HIEs from small intestine, but not colon, support HuNoV replication with donor, segment and strain-specific variations. Unexpectedly, HIEs from one donor are resistant to GII.3 infection. The genetically-modified J4 FUT2-KI HIEs enable cultivation of a broad range of GI and GII genotypes. New insights into strain-specific differences in HuNoV replication in HIEs support this platform for advancing understanding of HuNoV biology and developing potential therapeutics.
Similar articles
-
Insights into human norovirus cultivation in human intestinal enteroids.mSphere. 2024 Nov 21;9(11):e0044824. doi: 10.1128/msphere.00448-24. Epub 2024 Oct 15. mSphere. 2024. PMID: 39404443 Free PMC article.
-
New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids.mSphere. 2021 Jan 27;6(1):e01136-20. doi: 10.1128/mSphere.01136-20. mSphere. 2021. PMID: 33504663 Free PMC article.
-
Genetic Manipulation of Human Intestinal Enteroids Demonstrates the Necessity of a Functional Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus Infection.mBio. 2020 Mar 17;11(2):e00251-20. doi: 10.1128/mBio.00251-20. mBio. 2020. PMID: 32184242 Free PMC article.
-
Glycan Recognition in Human Norovirus Infections.Viruses. 2021 Oct 14;13(10):2066. doi: 10.3390/v13102066. Viruses. 2021. PMID: 34696500 Free PMC article. Review.
-
Human Norovirus Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid Cultures: Success and Challenges.Viruses. 2019 Jul 11;11(7):638. doi: 10.3390/v11070638. Viruses. 2019. PMID: 31336765 Free PMC article. Review.
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous