Advanced manufacturing provides tailor-made solutions for crystallography with x-ray free-electron lasers
- PMID: 38389979
- PMCID: PMC10883715
- DOI: 10.1063/4.0000229
Advanced manufacturing provides tailor-made solutions for crystallography with x-ray free-electron lasers
Abstract
Serial crystallography at large facilities, such as x-ray free-electron lasers and synchrotrons, evolved as a powerful method for the high-resolution structural investigation of proteins that are critical for human health, thus advancing drug discovery and novel therapies. However, a critical barrier to successful serial crystallography experiments lies in the efficient handling of the protein microcrystals and solutions at microscales. Microfluidics are the obvious approach for any high-throughput, nano-to-microliter sample handling, that also requires design flexibility and rapid prototyping to deal with the variable shapes, sizes, and density of crystals. Here, we discuss recent advances in polymer 3D printing for microfluidics-based serial crystallography research and present a demonstration of emerging, large-scale, nano-3D printing approaches leading into the future of 3D sample environment and delivery device fabrication from liquid jet gas-dynamic virtual nozzles devices to fixed-target sample environment technology.
© 2024 Author(s).
Conflict of interest statement
The authors have no conflicts to disclose.
Figures
Similar articles
-
3D printed devices and infrastructure for liquid sample delivery at the European XFEL.J Synchrotron Radiat. 2022 Mar 1;29(Pt 2):331-346. doi: 10.1107/S1600577521013370. Epub 2022 Feb 15. J Synchrotron Radiat. 2022. PMID: 35254295 Free PMC article.
-
Microfluidic polyimide gas dynamic virtual nozzles for serial crystallography.Rev Sci Instrum. 2020 Aug 1;91(8):085108. doi: 10.1063/5.0012806. Rev Sci Instrum. 2020. PMID: 32872940
-
Plug-and-play polymer microfluidic chips for hydrated, room temperature, fixed-target serial crystallography.Lab Chip. 2021 Dec 7;21(24):4831-4845. doi: 10.1039/d1lc00810b. Lab Chip. 2021. PMID: 34821226 Free PMC article.
-
Growing and making nano- and microcrystals.Nat Protoc. 2023 Mar;18(3):854-882. doi: 10.1038/s41596-022-00777-5. Epub 2022 Nov 30. Nat Protoc. 2023. PMID: 36451055 Review.
-
A guide to sample delivery systems for serial crystallography.FEBS J. 2019 Nov;286(22):4402-4417. doi: 10.1111/febs.15099. Epub 2019 Nov 6. FEBS J. 2019. PMID: 31618529 Review.
References
-
- Lee J., Kenward C., Worrall L. J., Vuckovic M., Gentile F., Ton A.-T., Ng M., Cherkasov A., Strynadka N. C. J., and Paetzel M., “ X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation,” Nat. Commun. 13(1), 5196 (2022).10.1038/s41467-022-32854-4 - DOI - PMC - PubMed
-
- Skaist Mehlman T., Biel J. T., Azeem S. M., Nelson E. R., Hossain S., Dunnett L., Paterson N. G., Douangamath A., Talon R., Axford D. et al., “ Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B,” eLife 12, e84632 (2023).10.7554/eLife.84632 - DOI - PMC - PubMed
-
- Fraser J. S., van den Bedem H., Samelson A. J., Lang P. T., Holton J. M., Echols N., Alber T., Fraser J. S., van den Bedem H., Samelson A. J. et al., “ Accessing protein conformational ensembles using room-temperature X-ray crystallography,” Proc. Natl. Acad. Sci. 108(39), 16247–16252 (2011).10.1073/pnas.1111325108 - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources