Administration with curcumin alleviates spinal cord ischemia-reperfusion injury by regulating anti-oxidative stress and microglia activation-mediated neuroinflammation via Nrf2/NF-κB axis
- PMID: 38228998
- DOI: 10.1007/s11626-023-00846-3
Administration with curcumin alleviates spinal cord ischemia-reperfusion injury by regulating anti-oxidative stress and microglia activation-mediated neuroinflammation via Nrf2/NF-κB axis
Abstract
Spinal cord ischemia-reperfusion injury (SCII) ranks as the common complication after aortic surgery, usually leading to devastating post-operative paraplegia. Microglia over-activation and neuronal cell loss are key pathological features of SCII. Curcumin is involved in several I/R injuries. However, its underlying mechanism in SCII remains elusive. Here, curcumin attenuated oxygen and glucose deprivation/reoxygenation (OGD/R)-induced oxidative injury in PC12 neuronal cells by increasing cell viability, inhibiting cell apoptosis, lactate dehydrogenase, malondialdehyde levels, but elevating anti-oxidative superoxide dismutase and glutathione peroxidase levels. Furthermore, curcumin restrained OGD/R-evoked microglia M1 activation by decreasing microglia M1 polarization marker IBA-1 and iNOS transcripts. Moreover, the increased inflammatory cytokine levels of TNF-α and IL-6 in microglia under OGD/R conditions were suppressed after curcumin treatment. Importantly, neuronal cells incubated with a conditioned medium from OGD/R-treated microglia exhibited lower cell viability and higher apoptotic ratio, which were overturned when microglia were treated with curcumin. Intriguingly, curcumin could inhibit the activation of the NF-κB pathway by Nrf2 enhancement in OGD/R-treated PC12 cells and microglia. Notably, targeting Nrf2 signaling reversed the protective efficacy of curcumin against OGD/R-evoked oxidative insult in neuronal, microglia M1 activation, inflammatory response, and microglial activation-evoked neuronal death. In vivo, curcumin improved histopathologic injury and neurologic motor function in SCII rats and attenuated oxidative stress, microglia activation and neuroinflammation in spinal cord tissues, and activation of the Nrf2/NF-κB pathway. Thus, curcumin may alleviate SCII by mitigating I/R-evoked oxidative injury in neuron and microglia activation-induced neuroinflammation and neuron death through Nrf2/NF-κB signaling, supporting a promising therapeutic agent for SCII.
Keywords: Curcumin; Microglia; Neuroinflammation; Oxidative stress; SCII.
© 2024. The Society for In Vitro Biology.
Similar articles
-
Perillaldehyde Alleviates Spinal Cord Ischemia-Reperfusion Injury Via Activating the Nrf2 Pathway.J Surg Res. 2021 Dec;268:308-317. doi: 10.1016/j.jss.2021.06.055. Epub 2021 Aug 13. J Surg Res. 2021. PMID: 34399353
-
Inhibition of heat shock protein family A member 8 attenuates spinal cord ischemia-reperfusion injury via astrocyte NF-κB/NLRP3 inflammasome pathway : HSPA8 inhibition protects spinal ischemia-reperfusion injury.J Neuroinflammation. 2021 Aug 6;18(1):170. doi: 10.1186/s12974-021-02220-0. J Neuroinflammation. 2021. PMID: 34362408 Free PMC article.
-
SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways.Bioengineered. 2022 Mar;13(3):7253-7261. doi: 10.1080/21655979.2022.2045830. Bioengineered. 2022. PMID: 35259059 Free PMC article.
-
Loureirin B protects against cerebral ischemia/reperfusion injury through modulating M1/M2 microglial polarization via STAT6 / NF-kappaB signaling pathway.Eur J Pharmacol. 2023 Aug 15;953:175860. doi: 10.1016/j.ejphar.2023.175860. Epub 2023 Jun 16. Eur J Pharmacol. 2023. PMID: 37331681 Review.
-
Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting.Mol Neurobiol. 2024 Jun;61(6):3409-3426. doi: 10.1007/s12035-023-03787-w. Epub 2023 Nov 22. Mol Neurobiol. 2024. PMID: 37991700 Review.
References
-
- Gu C, Li L, Huang Y, Qian D, Liu W, Zhang C, Luo Y, Zhou Z, Kong F, Zhao X, Liu H, Gao P, Chen J, Yin G (2020) Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy. Oxid Med Cell Longev 2020:3549704 - DOI - PubMed - PMC
-
- Ha Sen Ta N, Nuo M, Meng QT, Xia ZY (2019) The pathway of Let-7a-1/2-3p and HMGB1 mediated dexmedetomidine inhibiting microglia activation in spinal cord ischemia-reperfusion injury mice. J Mol Neurosci 69:106–114 - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources