Modeling gene regulatory networks using neural network architectures
- PMID: 38217125
- DOI: 10.1038/s43588-021-00099-8
Modeling gene regulatory networks using neural network architectures
Abstract
Gene regulatory networks (GRNs) encode the complex molecular interactions that govern cell identity. Here we propose DeepSEM, a deep generative model that can jointly infer GRNs and biologically meaningful representation of single-cell RNA sequencing (scRNA-seq) data. In particular, we developed a neural network version of the structural equation model (SEM) to explicitly model the regulatory relationships among genes. Benchmark results show that DeepSEM achieves comparable or better performance on a variety of single-cell computational tasks, such as GRN inference, scRNA-seq data visualization, clustering and simulation, compared with the state-of-the-art methods. In addition, the gene regulations predicted by DeepSEM on cell-type marker genes in the mouse cortex can be validated by epigenetic data, which further demonstrates the accuracy and efficiency of our method. DeepSEM can provide a useful and powerful tool to analyze scRNA-seq data and infer a GRN.
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Similar articles
-
Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.Brief Bioinform. 2023 Sep 22;24(6):bbad414. doi: 10.1093/bib/bbad414. Brief Bioinform. 2023. PMID: 37985457 Free PMC article.
-
DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.Brief Bioinform. 2024 May 23;25(4):bbae334. doi: 10.1093/bib/bbae334. Brief Bioinform. 2024. PMID: 38980373 Free PMC article.
-
Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.Bioinformatics. 2022 Sep 30;38(19):4522-4529. doi: 10.1093/bioinformatics/btac559. Bioinformatics. 2022. PMID: 35961023
-
Studying temporal dynamics of single cells: expression, lineage and regulatory networks.Biophys Rev. 2023 Aug 4;16(1):57-67. doi: 10.1007/s12551-023-01090-5. eCollection 2024 Feb. Biophys Rev. 2023. PMID: 38495440 Free PMC article. Review.
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
Cited by
-
DeepIMAGER: Deeply Analyzing Gene Regulatory Networks from scRNA-seq Data.Biomolecules. 2024 Jun 27;14(7):766. doi: 10.3390/biom14070766. Biomolecules. 2024. PMID: 39062480 Free PMC article.
-
A Machine Learning Approach to Simulate Gene Expression and Infer Gene Regulatory Networks.Entropy (Basel). 2023 Aug 15;25(8):1214. doi: 10.3390/e25081214. Entropy (Basel). 2023. PMID: 37628244 Free PMC article.
-
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model.PLoS Genet. 2023 Sep 13;19(9):e1010942. doi: 10.1371/journal.pgen.1010942. eCollection 2023 Sep. PLoS Genet. 2023. PMID: 37703293 Free PMC article.
-
Learning Causal Biological Networks with Parallel Ant Colony Optimization Algorithm.Bioengineering (Basel). 2023 Jul 31;10(8):909. doi: 10.3390/bioengineering10080909. Bioengineering (Basel). 2023. PMID: 37627794 Free PMC article.
-
Gene regulatory network inference using mixed-norms regularized multivariate model with covariance selection.PLoS Comput Biol. 2023 Jul 31;19(7):e1010832. doi: 10.1371/journal.pcbi.1010832. eCollection 2023 Jul. PLoS Comput Biol. 2023. PMID: 37523414 Free PMC article.
References
-
- Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013). - DOI
-
- Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). - DOI
-
- Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 17, 77 (2016). - DOI
-
- Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016). - DOI
-
- Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014). - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous